SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества научной социальной сети. Здесь хранятся все материалы с открытым доступом. Внесите свой вклад в общую библиотеку добавив больше книг и статей в свой раздел «Моя библиотека» с открытым доступом.
свернутьSciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В учебном пособии изложены основы общей и частной вирусологии. Обобщены данные о природе и происхождении вирусов человека и животных, их морфогенезе, химическом составе, механизме репродукции вирусов в клетках. Представлены сведения об отдельных вирусах и вызываемых ими заболеваниях. Особое внимание уделено возбудителям массовых инфекций: гриппа, острых респираторных заболеваний, гастроэнтеритов, гепатитов.
В учебнике изложены краткая история генетики человека, предмет, цели, задачи и методы клинической генетики. Приведены современные данные об общих закономерностях наследственной патологии человека, клинической и лабораторной диагностики наследственных болезней, методах лечения и профилактики. В нем нашли отражение новейшие сведения о геноме человека и значении его расшифровки для клинической медицины. Отдельная глава посвящена этическим вопросам медицинской генетики.
Первый вариант текста этой книжки писался почти тридцать лет тому назад. С тех пор изменилось очень многое.
Прежде всего, и это главное, изменился математический уровень основного круга читателей популярных математических книг: интересующихся математикой школьников старших классов и их преподавателей. Созданная сеть специализированных математических и физико-математических школ и классов предопределила существенное расширение математического кругозора соответствующего контингента учащихся, которых теперь можно заинтересовать скорее не забавными элементарными фактами, а уже достаточно глубокими и сложными результатами.
Кроме того, и это является фундаментальным фактом истории математики нашего времени, существенно сместился центр тяжести математических исследований в целом. В частности, утратила свои доминирующие позиции теория чисел, и резко повысился удельный вес экстремальных задач. В самостоятельную отрасль математики сложилась теория игр. По существу возникла вычислительная математика. Все это не могло не сказаться и на содержании научно-популярной литературы по математике.
Далее, числа Фибоначчи проявили себя еще в нескольких математических вопросах, среди которых в первую очередь следует назвать решение Ю. В. Матиясевичем десятой проблемы Гильберта и далеко не столь глубокую, но приобретшую широкую известность теорию поиска экстремума унимодальной функции, построенную впервые, по-видимому, Р. Беллманом.
Наконец, было установлено довольно большое количество ранее неизвестных свойств чисел Фибоначчи, а к самим числам существенно возрос интерес. Значительное число связанных с математикой людей в различных странах приобщились к благородному хобби “фибоначчизма”. Наиболее убедительным свидетельством этому может служить журнал The Fibonacci Quarterly, издаваемый в США с 1963 г.
Все сказанное определило изменения содержания книги от издания к изданию и тот вид, в котором она предлагается читателю сейчас. Во втором издании был добавлен параграф о фибоначчиевых планах поиска экстремума унимодальной фу
Основу книги составляют задачи, предлагавшиеся на Всесоюзных заочных математических олимпиадах и конкурсах Всесоюзной заочной математической школы для учащихся 7-10 классов. Задачи разбиты на тематические циклы, за которыми следуют их решения, обсуждение и дополнительные вопросы для самостоятельного обдумывания.
Цель книги - научить читателя творчески относиться к решению каждой интересной задачи, показать ему, с какими другими математическими вопросами связана эта задача и какие общие закономерности лежат в основе ее решения. Для школьников 7-10 классов, преподавателей, студентов.
В книге популярно излагаются некоторые теоремы, относящиеся к недавно сформировавшемуся разделу математики — комбинаторной геометрии.
Предназначена для учащихся 8–10 классов, интересующихся математикой, студентов и преподавателей математики.
Книга содержит теоретический материал и задачи по курсу элементарной математике.
Автор в доступной форме объясняет понятия высшей математики.
Первый параграф предлагаемой вниманию читателя книжки посвящен доказательству следующей теоремы, найденной математиками Бояй и Гервином: если два многоугольника имеют одинаковую площадь, то один из них можно разбить на такие части, из которых возможно составить второй многоугольник. Более краткая формулировка: если два многоугольника равновелики, то они равносоставлены. Изучению некоторых вопросов, связанных с равносоставленностью фигур, посвящена вся книжка в целом. Она разделена на две главы, в первой из которых изучаются многоугольники, а во второй - многогранники. Сформулированная выше теорема является одной из основных в первой главе.
Во второй главе наиболее интересна теорема Дена: существуют многогранники, которые имеют одинаковый объем (равновелики), но не являются равносоставленными.
В книге на простых примерах, взятых из области механики и геометрии и доступных учащимся средней школы, разъясняется понятие огибающей, играющее важную роль в высшей математике. Эти примеры не требуют рассмотрения никаких других функций, кроме многочленов, благодаря чему разыскание огибающих производится весьма простыми приемами. Книга может быть использована в работе математических кружков.
Учебное пособие “Методы электронно-микроскопического исследования мозга” подготовлено в Институте мозга АМН СССР (директор член-корреспондент АМН СССР, профессор О.С. Адрианов) руководителем лаборатории по изучению ультраструктуры мозга профессором Н.Н. Богомоловым.