Целью работы является проведение оценки экологического состояния воды и донных отложений крупнейшего искусственного водоема Алтайского края - Гилёвского водохранилища на содержание искусственных и естественных радионуклидов и тяжелых металлов. Определены концентрации ионов меди, свинца, цинка, никеля, кадмия в пробах донных отложений и воде водохранилища атомно-абсорбционным методом, радиоактивность 241Am и 137Cs, а также содержание естественных и искусственных радионуклидов. В результате установлено, что мощность дозы гaммa-излучения донных отложений Гилёвского водохранилища не превышает нормативных значений и составляет 0,10-0,18 мкЗв/ч. Содержание в донных отложениях естественных радионуклидов (40K, 226Ra, 232Th) соответствует природному уровню, при этом искусственные радионуклиды 241Am, 137Cs, 90Sr, 239+240Pu в верхнем бьефе не обнаружены, в то время как в нижней они зафиксированы, что может являться результатом накопления радиоактивности в наиболее узком месте водохранилища в ходе перемещения донных наносов течением. Содержание цинка, свинца, кадмия, никеля и железа не превышает значений, нормируемых для водоемов рыбохозяйственного назначения, в отличие от меди, содержание которой в 3,7 раза превышает этот уровень. Нормативы для питьевой воды не превышены ни по одному из анализируемых показателей.
Разработка эффективной системы водоподготовки на ТЭЦ основана на реализации обработки воды в несколько ступеней, на первой осуществляется удаление взвесей и коллоидных примесей, частичная дезинфекция и обесцвечивание. На второй ступени происходит более тонкая очистка от растворенных примесей мембранными, ионоообменными, методами, магнитной обработкой и другими. Выбор конкретного метода предподготовки основывается на специфике производства и предъявляемым к нему требованиям. Рассматривается схема обессоливания котловой воды коксохимического предприятия, где в настоящее время используется ионный обмен. На стадии предварительной очистки вода осветляется с применением коагулянта и известкового молока, после чего фильтруется через угольные фильтры. Далее вода подается на установку обессоливания ионным обменом на Н-катионитовые и ОН-анионитовые фильтры, между которыми расположен декарбонизатор для удаления углекислого газа. Предложено заменить первую ступень ионообменных фильтров на мембранную установку нанофильтрации, которая позволит выводить из воды растворенную углекислоту, как следствие - исключить из схемы декарбонизатор. Использование нанофильтрации с последующей доочисткой ионным обменом увеличивает фильтроцикл ионного обмена второй ступени, что сокращает расход реагентов на регенерацию ионита, количество промывных вод и уменьшает затраты на реагентное хозяйство