SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Результаты поиска: 5 док. (сбросить фильтры)
Статья: ОБНАРУЖЕНИЕ АНОМАЛИЙ ВРЕМЕННОГО РЯДА НА ОСНОВЕ ТЕХНОЛОГИЙ ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА ДАННЫХ И НЕЙРОННЫХ СЕТЕЙ

В статье рассмотрена задача поиска аномальных подпоследовательностей временного ряда, решение которой в настоящее время востребовано в широком спектре предметных областей. Предложен новый метод обнаружения аномальных подпоследовательностей временного ряда с частичным привлечением учителя. Метод базируется на концепциях диссонанса и сниппета, которые формализуют соответственно понятия аномальных и типичных подпоследовательностей временного ряда. Предложенный метод включает в себя нейросетевую модель, которая определяет степень аномальности входной подпоследовательности ряда, и алгоритм автоматизированного построения обучающей выборки для этой модели. Нейросетевая модель представляет собой сиамскую нейронную сеть, где в качестве подсети предложено использовать модификацию модели ResNet. Для обучения модели предложена модифицированная функция контрастных потерь. Формирование обучающей выборки выполняется на основе репрезентативного фрагмента ряда, из которого удаляются диссонансы, маломощные сниппеты со своими ближайшими соседями и выбросы в рамках каждого сниппета, трактуемые соответственно как аномальная, нетипичная деятельность субъекта и шумы. Вычислительные эксперименты на временных рядах из различных предметных областей показывают, что предложенная модель по сравнению с аналогами показывает в среднем наиболее высокую точность обнаружения аномалий по стандартной метрике VUS-PR. Обратной стороной высокой точности метода является большее по сравнению с аналогами время, которое затрачивается на обучение модели и распознавание аномалии. Тем не менее, в приложениях интеллектуального управления отоплением зданий метод обеспечивает быстродействие, достаточное для обнаружения аномальных подпоследовательностей в режиме реального времени.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Краева Яна
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПОИСК АНОМАЛИЙ В СЕНСОРНЫХ ДАННЫХ ЦИФРОВОЙ ИНДУСТРИИ С ПОМОЩЬЮ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

В статье представлены результаты исследований по поиску аномалий в сенсорных данных из различных приложений цифровой индустрии. Рассматриваются временные ряды, полученные при эксплуатации деталей машин, показания датчиков, установленных на металлургическом оборудовании, и показания температурных датчиков в системе умного управления отоплением зданий. Аномалии, найденные в таких данных, свидетельствуют о нештатной ситуации, отказах, сбоях и износе технологического оборудования. Аномалия формализуется как диапазонный диссонанс - подпоследовательность временного ряда, расстояние от которой до ее ближайшего соседа не менее наперед заданного аналитиком порога. Ближайшим соседом данной подпоследовательности является такая подпоследовательность ряда, которая не пересекается с данной и имеет минимальное расстояние до нее. Поиск диссонансов выполняется с помощью параллельного алгоритма для графического процессора, ранее разработанного автором данной статьи. Для визуализации найденных аномалий предложены метод построения тепловой карты диссонансов, имеющих различные длины, и алгоритм нахождения в построенной тепловой карте наиболее значимых диссонансов независимо от их длин.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Краева Яна
Язык(и): Русский, Английский
Доступ: Всем
Статья: ПОИСК АНОМАЛИЙ В БОЛЬШИХ ВРЕМЕННЫХ РЯДАХ НА КЛАСТЕРЕ С GPU УЗЛАМИ

В настоящее время обнаружение аномалий в длинных временных рядах возникает в широком спектре предметных областей: цифровая индустрия, здравоохранение, моделирование климата, финансовая аналитика и др. Диссонанс формализует понятие аномалии и определяется как подпоследовательность ряда, которая имеет расстояние до своего ближайшего соседа, не превышающее наперед заданного аналитиком порога. Ближайшим соседом подпоследовательности является та подпоследовательность ряда, которая не пересекается с данной и имеет минимальное расстояние до нее. В статье представлен новый алгоритм поиска диссонансов временн´ого ряда на вычислительном кластере, каждый узел которого оснащен графическим процессором. Алгоритм применяет параллелизм по данным: временн´ой ряд разбивается на непересекающиеся фрагменты, обрабатываемые графическими процессорами узлов вычислительного кластера. С помощью ранее разработанного авторами параллельного алгоритма на каждом узле выполняется отбор локальных кандидатов в диссонансы. Далее с помощью обменов на каждом узле формируется множество глобальных кандидатов как объединение всех локальных кандидатов. Затем каждый узел выполняет глобальную очистку, удаляя из множества глобальных кандидатов ложноположительные диссонансы. Глобальная очистка распараллеливается на основе блочного умножения матрицы кандидатов и матрицы подпоследовательностей фрагмента. Результирующее множество диссонансов формируется как пересечение множеств, полученных узлами по итогу глобальной очистки. Вычислительные эксперименты с синтетическими и реальными временными рядами, проведенные на платформе суперкомпьютеров Ломоносов-2 и Лобачевский, оснащенных 48-64 графическими процессорами, показывают высокую масштабируемость разработанного алгоритма.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Цымблер Михаил
Язык(и): Русский
Доступ: Всем
Статья: ВОССТАНОВЛЕНИЕ ПРОПУЩЕННЫХ ЗНАЧЕНИЙ ВРЕМЕННОГО РЯДА НА ОСНОВЕ СОВМЕСТНОГО ПРИМЕНЕНИЯ АНАЛИТИЧЕСКИХ АЛГОРИТМОВ И НЕЙРОННЫХ СЕТЕЙ

В настоящее время обработка данных временных рядов осуществляется в широком спектре научных и практических приложений, в которых актуальной является задача восстановления единичных точек или блоков значений временного ряда, пропущенных из-за аппаратных или программных сбоев либо ввиду человеческого фактора. В статье представлен метод SANNI (Snippet and Artificial Neural Network-based Imputation) для восстановления пропущенных значений временного ряда, обрабатываемого в режиме офлайн. SANNI включает в себя две нейросетевые модели: Распознаватель и Реконструктор. Распознаватель определяет сниппет (типичную подпоследовательность) ряда, на который наиболее похожа данная подпоследовательность с пропущенной точкой, и состоит из следующих трех групп слоев: сверточные, рекуррентный и полносвязные. Реконструктор, используя выход Распознавателя и входную подпоследовательность c пропуском, восстанавливает пропущенную точку. Реконструктор состоит из трех групп слоев: сверточные, рекуррентные и полносвязные. Топологии слоев Распознавателя и Реконструктора параметризуются относительно соответственно количества сниппетов и длины сниппета. Представлены методы подготовки обучающих выборок указанных нейросетевых моделей. Проведены вычислительные эксперименты, показавшие, что среди передовых аналитических и нейросетевых методов SANNI входит в тройку лучших.

Формат документа: pdf
Год публикации: 2023
Кол-во страниц: 1
Загрузил(а): Цымблер Михаил
Язык(и): Русский
Доступ: Всем
Статья: ПОИСК ТИПИЧНЫХ ПОДПОСЛЕДОВАТЕЛЬНОСТЕЙ ВРЕМЕННОГО РЯДА НА ГРАФИЧЕСКОМ ПРОЦЕССОРЕ

Поиск типичных подпоследовательностей временного ряда является одной из актуальных задач интеллектуального анализа временных рядов. Данная задача предполагает нахождение набора подпоследовательностей временного ряда, которые адекватно отражают течение процесса или явления, задаваемого этим рядом. Поиск типичных подпоследовательностей дает возможность резюмировать и визуализировать большие временные ряды в широком спектре приложений: мониторинг технического состояния сложных машин и механизмов, интеллектуальное управление системами жизнеобеспечения, мониторинг показателей функциональной диагностики организма человека и др. Предложенная недавно концепция сниппета формализует типичную подпоследовательность временного ряда следующим образом. Сниппет представляет собой подпоследовательность, на которую похожи многие другие подпоследовательности данного ряда в смысле специализированной меры схожести, основанной на евклидовом расстоянии. Поиск типичных подпоследовательностей с помощью сниппетов показывает адекватные результаты для временных рядов из широкого спектра предметных областей, однако соответствующий алгоритм имеет высокую вычислительную сложность. В настоящей работе предложен новый параллельный алгоритм поиска сниппетов во временном ряде на графическом ускорителе. Распараллеливание выполнено с помощью технологии программирования CUDA. Разработаны структуры данных, позволяющие эффективно распараллелить вычисления на графическом процессоре. Представлены результаты вычислительных экспериментов, подтверждающих высокую производительность разработанного алгоритма.

Формат документа: pdf
Год публикации: 2021
Кол-во страниц: 1
Загрузил(а): Цымблер Михаил
Язык(и): Русский
Доступ: Всем