SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Панорамная визуализация потока или теплоотдачи на поверхностных моделях является эффективным и информативным методом исследования направления в пограничном слое. Вследствие развития цифровых и технических возможностей научные исследования все более основаны на анализе больших данных с помощью искусственного интеллекта (ИИ). Насколько оправдано применение тех или иных методов ИИ в каждой конкретной задаче, пока открытый вопрос. Цель работы - обзор результатов применения нейронных сетей (НС) и машинного обучения для решения задач диагностики течений с помощью ЖК. А именно, для измерения полей температуры, тепловых потоков и векторов касательного напряжения внешнего трения. Кроме этого, актуальными задачами являются измерение физической характеристики ЖК и получение новых ЖК-смесей. Обсуждаются возможности и ограничения, области применения и перспективы нейросетевого подключения. А также программные средства для его реализации. Анализ литературных данных показал, что применение НС и глубокого машинного обучения для аппроксимации калибровочных зависимостей температуры и касательного напряжения от многофакторного оптического отклика ЖК позволяет получить точность, сравнимую с пределом контрольной выборки.
В работе рассмотрены вопросы лазерного плазмохимического травления материалов электронной техники на примере разделения пластин алмаза и сапфира на кристаллы. В основе разработанного метода лежит физическое явление – оптический пробой в специально подобранных газовых средах, в которых поджигается плазма и производится плазмохимическое травление материалов подложек (пластин) с образованием летучих продуктов химических реакций и их эвакуацией с помощью вакуумной системы. Работы проводились в диапазоне рабочих давлений 110-3–110-1 Торр. В качестве рабочих сред использовались фторидные системы: (SF6 + O2; CClF3 + O2; F2 и т. д.), чистый кислород (О2) и водород (Н2). Обе системы – фторидная и кислородная «работают» хорошо для алмаза. Водородная система предпочтительна для сапфира.
Изучаются затухающие вращательные колебания цилиндра, который в головной части снабжен соосным диском, а в хвостовой части имеет стабилизатор. Удлинение цилиндра (отношение длины к диаметру) равно девяти. Цилиндр крепится в рабочей части аэродинамической трубы малых скоростей на проволочной подвеске, содержащей стальные пружины. В положении равновесия ось цилиндра горизонтальна и параллельна вектору скорости набегающего потока. К одной из пружин подвески присоединен полупроводниковый тензопреобразователь, измеряющий во время колебаний зависимость натяжения пружин от времени. Напряжение на выходе тензопреобразователя поступает на РС-осциллограф. Цифровой сигнал осциллографа передается на компьютер. После калибровки прибора определялась частота и амплитуда затухающих вращательных колебаний вокруг горизонтальной оси, проходящей через центр цилиндра и перпендикулярной вектору скорости набегающего потока. Подд ействием воздушного потока увеличивается скорость затухания вращательных колебаний цилиндра. Влияние воздушного потока описывается аналогами вращательных производных, которые в случае плохо обтекаемых тел зависят от амплитуды колебаний угла наклона тела и от амплитуды угловой скорости. Предложена простая модель влияния стабилизатора на вращательные производные.