SCI Библиотека

SciNetwork библиотека — это централизованное хранилище... ещё…

Результаты поиска: 2 док. (сбросить фильтры)
О ПОВЕДЕНИИ ДИСКРЕТНОГО СПЕКТРА ОПЕРАТОРА ЛАПЛАСА С ДВУМЯ РАЗБЕГАЮЩИМИСЯ ВОЗМУЩЕНИЯМИ НА ПЛОСКОСТИ В СЛУЧАЕ ДВУКРАТНОГО ПРЕДЕЛЬНОГО СОБСТВЕННОГО ЗНАЧЕНИЯ

Рассматривается оператор Лапласа с двумя разбегающимися возмущениями на плоскости. Возмущениями являются вещественные финитные непрерывные потенциалы. Исследуется поведение собственных значений возмущённого оператора, когда расстояние между потенциалами стремится к бесконечности. Изучается вопрос существования возмущённых собственных значений в случае двукратного предельного собственного значения (двукратное собственное значение оператора Лапласа с первым финитным потенциалом). Целью работы является построение первых членов асимптотических разложений возмущённых собственных значений и соответствующих им собственных функций в случае двукратного предельного собственного значения. Методика, с помощью которой были получены результаты, применима и для построения полных асимптотических разложений возмущённых собственных значений и соответствующих им собственных функций. Финитность разбегающихся потенциалов, позволила выявить сложную экспоненциально-степенную структуру полученных асимптотик. К основным результатам работы относятся: первые члены асимптотических разложений возмущённых собственных значений и соответствующих им собственных функций; равенство нулю первых поправок асимптотик возмущённых собственных значений. экспоненциально-степенная структура асимптотик возмущённых собственных значений и соответствующих им собственных функций.

Формат документа: pdf
Год публикации: 2022
Кол-во страниц: 1
Загрузил(а): Головина Анастасия
Язык(и): Русский
СХОДИМОСТЬ ТОЧЕЧНОГО СПЕКТРА ОПЕРАТОРОВ С РАЗБЕГАЮЩИМИСЯ ВОЗМУЩЕНИЯМИ (КРАТНЫЙ СЛУЧАЙ)

Абстрактный оператор рассматривается в произвольной области многомерного пространства. Возмущениями являются некоторые произвольные операторы. Изучается сходимость кратных собственных значений. Доказаны теоремы сходимости.

Формат документа: pdf
Год публикации: 2024
Кол-во страниц: 1
Загрузил(а): Головина Анастасия
Язык(и): Русский