SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Рассматривается поведение квантовой запутанности в процессе унитарной эволюции в конструктивных моделях многокомпонентных квантовых систем. Описываются группы симметрий квантовых систем, допускающих возникновение геометрических структур, ассоциированных с квантовой запутанностью. Алгоритмы моделирования динамики квантовой запутанности основаны на методах компьютерной алгебры и вычислительной теории групп. Приводятся примеры конкретных вычислений.
В статье предложены два наиболее простых метода определения положений равновесия спутника, движущегося в центральном ньютоновом силовом поле по круговой орбите под действием гравитационного момента. В первом методе применялись подходы линейной алгебры, во втором алгоритмы компьютерной алгебры. Положения равновесия спутника в орбитальной системе координат при заданных значениях главных центральных моментов инерции определяются корнями системы нелинейных алгебраических уравнений. Для определения равновесных решений проводилась декомпозиция системы алгебраических уравнений с применением методов линейной алгебры и алгоритмов построения базисов Гребнера. Положения равновесия спутника определялись путем исследования числа действительных корней алгебраических уравнений из полученных базисов Гребнера. С использованием предложенного подхода показано, что спутник с неравными главными центральными моментами инерции имеет на круговой орбите 24 положения равновесия.
Факторизация полиномов – классическая алгоритмическая проблема алгебры, имеюшая широкий спектр приложений. Особый интерес представляет факторизация над конечными полями, среди которых поле порядка два является, вероятно, наиболее важным в связи с представлением булевых функций полиномами Жегалкина. В частности, факторизация булевых полиномов соответствует конъюнктивной декомпозиции булевых функций, заданных в алгебраической нормальной форме. Кроме того, факторизация дает решение проблемы декомпозиции функций, заданных в СДНФ и позитивных ДНФ, а также декартовой декомпозиции реляционых данных. Эти приложения демонстрируют важность разработки быстрых алгоритмов факторизации. В статье мы рассматриваем некоторые недавно предложенные алгоритмы факторизации полиномиальной сложности и описываем параллельную MIMD-реализацию, которая использует как параллелизм уровня задачи, так и параллелизм уровня данных. Мы представляем эксперименты, выполненные на бенчмарках логического синтеза и на синтетических (случайных) полиномах, которые показывают значительное ускорение факторизации. В заключение представлены результаты тестирования параллельной реализации алгоритма на массивнопараллельной многоядерной архитектуре (Redefine).
Для систем обыкновенных дифференциальных уравнений (ОДУ) с невырожденной линейной частью в общем и гамильтоновом случаях ставится задача отыскания инвариантных координатных подпространств в координатах ее нормальной формы, вычисленной вблизи положения равновесия. Приведены условия существования таких инвариантных подпространств в терминах резонансных соотношений между собственными числами линейной части системы. Дан алгоритм поиска резонансных соотношений между собственными числами без их явного вычисления, который существенно использует методы компьютерной алгебры и q-аналог субрезультантов многочлена. Обсуждается его реализация в трех распространенных системах компьютерной алгебры – Mathematica, Maple и SymPy. Приведены содержательные модельные примеры.
Предложены эвристические вероятностные алгоритмы полиномиального времени с односторонней ошибкой для распознавания кубических гиперповерхностей, чьи сингулярные локусы не содержат никакого линейного подпространства достаточно большой размерности. Эти алгоритмы легко реализовать в системах компьютерной алгебры. Алгоритмы основаны на проверке условий, что гессиан кубической формы не обращается в нуль тождественно или не определяет конус в проективном пространстве. Проверка свойств гессиана, в свою очередь, выполнима вероятностными алгоритмами с односторонней ошибкой, основанными на лемме Шварца–Зиппеля.
Обсуждается проблема поиска равновесных состояний машины Атвуда, в которой шкив конечного радиуса заменяется двумя отдельными малыми шкивами и оба груза могут колебаться в вертикальной плоскости. Получены дифференциальные уравнения движения системы и вычислены их решения в виде степенных рядов по малому параметру. Показано, что в случае грузов одинаковой массы равновесное положение r=const системы существует только при одинаковых амплитудах и частотах колебаний грузов и сдвиге фаз α = 0 или α = π. Кроме того, возможно состояние динамического равновесия, когда оба груза совершают колебания с одинаковыми амплитудами и частотами, а сдвиг фаз составляет α=±π/2. При этом длины маятников также совершают колебания около некоторого равновесного значения. Сравнение полученных результатов с соответствующими численными решениями уравнений движения подтверждает их корректность. Все необходимые вычисления выполняются с помощью системы компьютерной алгебры Wolfram Mathematica.
Рассматривается задача построения начальных членов формальных лорановых рядов, являющихся решениями для заданной компоненты yk (1⩽k⩽m) вектора неизвестных y дифференциальной системы y′=Ay, где y=(y1,…,ym)T, A – m × m-матрица, элементами которой являются d-усечения формальных лорановых рядов, т.е. их начальные члены до степени d⩾0 включительно. Предлагается алгоритм решения задачи с использованием алгоритма TSLS (Truncated Series Laurent Solution). Строящиеся предлагаемым алгоритмом первые члены формальных лорановых решений для yk являются инвариантными относительно возможных продолжений элементов матрицы исходной системы.
В статье предлагается алгоритмическая реализация элементарной версии метода Рунге для семейства диофантовых уравнений 4-й степени с двумя неизвестными. К уравнениям рассматриваемого типа сводится любое диофантово уравнение 4-й степени, старшая однородная часть которого разлагается в произведение линейного и кубического многочленов. Компьютерную реализацию алгоритма решения (в его оптимизированном виде) предполагается осуществить в системе компьютерной алгебры PARI/GP.
Компьютерная алгебра все шире применяется в научных и прикладных вычислениях. В качестве примера приведем тензорные вычисления или в более широком смысле этого слова – упрощение выражений с индексами. В настоящей статье развивается метод цветных графов для упрощения абстрактных выражений с индексами на случай, когда индексы могут быть отнесены к нескольким различным типам. Примерами таких индексов могут быть верхние и нижние индексы в тензорных выражениях. Предложенный подход позволяет значительно уменьшить число перебираемых вариантов при поиске канонической формы выражения, что резко ускоряет процесс вычислений.
В исследовательских задачах, требующих применения численных методов решения систем обыкновенных дифференциальных уравнений, часто возникает необходимость выбора наиболее эффективного и оптимального для конкретной задачи численного метода. В частности, для решения задачи Коши, сформулированной для системы обыкновенных дифференциальных уравнений, применяются методы Рунге–Кутты (явные или неявные, с управлением шагом сетки или без и т.д.). При этом приходится перебирать множество реализаций численного метода, подбирать коэффициенты или другие параметры численной схемы. В данной статье предложено описание разработанной авторами библиотеки и скриптов автоматизации генерации функций программного кода на языке Julia для набора численных схем методов Рунге–Кутты. При этом для символьных манипуляций использовано программное средство подстановки по шаблону. Предлагаемый подход к автоматизации генерации программного кода позволяет вносить изменения не в каждую подлежащую сравнению функцию по отдельности, а использовать для редактирования единый шаблон, что с одной стороны дает универсальность в реализации численной схемы, а с другой позволяет свести к минимуму число ошибок в процессе внесения изменений в сравниваемые реализации численного метода. Рассмотрены методы Рунге–Кутты без управления шагом, вложенные методы с управлением шагом и методы Розенброка также с управлением шагом. Полученные автоматически с помощью разработанной библиотеки программные коды численных схем протестированы при численном решении нескольких известных задач.