SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
В монографии рассмотрены методы нахождения полиномиальных и целых трансцендентных решений алгебраических дифференциальных уравнений.
Книга рассчитана на научных работников и аспирантов, занимающихся общей и аналитической теориями дифференциальных уравнений. Также может быть использована при чтении специальных курсов по дифференциальным уравнениям и их приложениям.
Выпускаемая в русском переводе книга Айнса (E. L. Ince) представляет ценный вклад в нашу математическую литературу. Книга состоит из 21 главы и разделена на две части.
Цель настоящего пособия — помочь студенту-заочнику педагогического института овладеть приемами и методами решения задач при самостоятельном изучении курса математического анализа (разделов «Ряды» и «Дифференциальные уравнения»).
Пособие написано в соответствии с программой специальности «математика», однако им могут воспользоваться и студенты специальности «физика» (в разделе «Ряды» для них написан параграф «Ряды Фурье»).
Книга содержит больше ста решенных типовых примеров и задач, а также задачи для самостоятельного решения.
Прежде чем приступать к самостоятельному решению задач, необходимо по одному из учебников изучить соответствующий теоретический материал (в начале каждого параграфа настоящего пособия даются такие указания со ссылкой на главу, параграф и пункт учебника). Затем следует внимательно (с карандашом в руках) разобрать примеры решения типовых задач, после чего выписать все задачи, предназначенные для самостоятельного решения.
Теория почти-периодических (п.п.) функций была создана в основном и опубликована в 1924-1926 гг. датским математиком Гаральдом Бором. Работам Бора предшествовали важные исследования П. Боиля и Е. Эсклангона. В дальнейшем (на протяжении 20-30-х годов) теория Бора получила существенное развитие в работах С. Бохнера, Г. Вейля, А. Безиковича, Ж. Фавара, Дж. Неймана, В. В. Степанова, Н. Н. Боголюбова и др.
В частности, теория п.п. функций дала сильный толчок развитию гармонического анализа функций на группах (п.п. функции, ряды и интегралы Фурье на группах). В 1933 г. вышла важная работа С. Бохнера, посвященная перенесению теории п.п. функций на векторно-значные (абстрактные) функции со значениями в банаховом пространстве.
Из самого происхождения этого уравнения очевидно, что всякая функция, определяемая соотношением (1), удовлетворяет уравнению (3), каковы бы ни были значения, даваемые постоянным c. Соотношение (1) называется частным интегралом дифференциального уравнения (3). Совокупность этих частных интегралов называется общим интегралом того же уравнения.
В монографии рассматриваются проблемы, связанные исследования математических моделей динамических процессов во фрактальных и пористых средах. Монография посвящена основным понятиям интегралов и производных дробного порядка, численным методам решения обыкновенных дифференциальных уравнений дробного порядка и дифференциальных уравнений в частных производных дробного порядка, исследованию процессов теплопереносса во фрактальных и пористых средах и методам разработки алгоритмов для обработки цифровых изображений на основе обобщенных операторов дробного дифференцирования. Изложенные в монографии численные методы решения задачи Коши для системы дифференциальных уравнений с производными дробного порядка и краевых задач для дифференциальных уравнений в частных производных дробного порядка могут служить основой построения эффективных численных алгоритмов для численного исследования нелокальных процессов во фрактальных средах. Алгоритмы обработки цифровых изображений можно использовать для обработки цифровых изображений, а эмпирические уравнения для теплопроводности – для расчета теплопроводности горных пород в зависимости от температуры и давления.
Предназначена для студентов, аспирантов и специалистов, интересующихся дифференциальными уравнениями с производными дробного порядка и их приложениями.
«Справочник по обычным дифференциальным уравнениям» известного немецкого математика Эриха Камке (1890—1961) представляет собой уникальное по охвату материала издание и занимает достойное место в мировой справочной математической литературе.
Первое издание русского перевода этой книги появилось в 1951 году. Прошедшие с тех пор два десятилетия были периодом бурного развития вычислительной математики и вычислительной техники. Современные вычислительные средства позволяют более точно решать разнообразные задачи, ранее казавшиеся слишком громоздкими.
В частности, численные методы широко применяются в задачах, связанных с обыкновенными дифференциальными уравнениями. Тем не менее, возможность записать общее решение того или иного дифференциального уравнения или системы в замкнутом виде имеет во многих случаях значительные преимущества. Поэтому обширный справочный материал, который собран в третьей части книги Э. Камке, — около 1650 уравнений с решениями — сохраняет большое значение и сейчас.
Групповой анализ дифференциальных уравнений возник как научное направление в работах выдающегося математика XIX века Софуса Ли (1842–1899) и служил главной составной частью его важнейшего творения — теории непрерывных групп.
Первоначальная основная задача группового анализа — вопрос о разрешимости в квадратурах дифференциальных уравнений — была практически решена самим Ли, но не нашла широкого применения.
Хотя подход Ли к дифференциальным уравнениям ещё использовался его ранними последователями, позже исследования в этом направлении прекратились, и надолго.
Книга посвящена проблеме численного решения стохастических дифференциальных уравнений Ито. Изложены как известные, так и ряд новых результатов, связанных со свойствами стохастических интегралов, стохастическими разложениями процессов Ито, аппроксимацией повторных стохастических интегралов, численными методами для нелинейных и линейных систем стохастических дифференциальных уравнений Ито. Книга адресована специалистам по теории случайных процессов, вычислительной математике, программистам, аспирантам и студентам старших курсов.
Книга английских математиков, дающая краткое введение в качественную теорию дифференциальных уравнений и ее приложений к системам, зависящим от времени. Авторы знакомят читателей с методами получения результатов и показывают, как их применять. Помимо классических приложений в области механики и электротехники, приведены примеры из области экологии, уфологии, экономики и медицины. Для математиков-прикладников, преподавателей, аспирантов и студентов вузов.