SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
По результатам тензометрических измерений для описания процесса упруго-пластического деформирования стали 1Х18Н9Т используется модель кинематически упрочняющегося тела. Особое внимание уделено процессам, происходящим в приповерхностных слоях. Модель учитывает рост стесненности сдвиговых деформаций вглубь материала. Увеличение напряжения пластического течения в глубину описывается полиномом второго порядка. Экспериментально и путем расчетов методом редукционных коэффициентов в процессе последовательных приближений определены основные параметры поверхностного эффекта: глубина, коэффициент упрочнения материала, напряжения пластического течения на поверхности и внутри материала. Показано, что для исследования приповерхностного эффекта тензометрическим методом следует отдавать предпочтение испытаниям образцов на изгиб, а не на растяжение. Наличием поверхностного эффекта объясняются следующие факты: разрушение образца при испытании на растяжение начинается не с поверхности, а изнутри, зарождение усталостных трещин происходит под поверхностью, приповерхностный эффект практически не влияет на деформированное состояние упругого тела, но очень сильно влияет на напряженное состояние у поверхности
Актуальная тенденция в области экспериментальной механики деформируемого твердого тела состоит в расширении номенклатуры типов опытных образцов. В настоящей статье рассматривается эксперимент по мягкому нагружению так называемого бразильского диска с двумя наклонными трещинами. Испытания образцов указанного типа предоставляют важную информацию по хрупкому и квазихрупкому разрушению в режиме смешанного нагружения (I+II моды). При практическом использовании у образцов в окрестности вершины трещины необходимо знать значения параметров напряженного состояния, таких как коэффициенты интенсивности напряжений KI, KII и T-напряжение. К сожалению, по причине сложной геометрии образцов для нахождения этих параметров не существует аналитических выражений, и они вычисляются с помощью конечно-элементного моделирования с пост-процессорной обработкой решений. Описанная процедура наталкивается на значительные алгоритмические трудности, поэтому применимость новых образцов остается ограниченной. Для упрощения вычислительных экспериментов авторами предлагается подход, основанный на аппроксимации зависимости искомых параметров напряженного состояния от аргументов задачи, а именно, от размеров образца–диска, длины трещин и угла их наклона по отношению к оси нагрузки. Аппроксимация искомых параметров строится исходя из решения линейной задачи о наименьшем среднеквадратичном отклонении. Для точной аппроксимации могут потребоваться полиномы со слагаемыми больших степеней, но наличие избыточного числа мономов приводит к стремительному увеличению количества коэффициентов в аппроксиматоре и, как следствие, к быстрому ухудшению обусловленности задачи. В итоге существенно ухудшается точность и устойчивость аппроксимации. Во избежание избыточной параметризации рассматриваются три способа построения базисов в пространстве аппроксимирующих полиномов. Точность построенных аппроксиматоров оценивается путем сравнения с данными, полученными при численном моделировании и подтвержденными экспериментом. Как показали расчеты, погрешность аппроксиматоров составляет около 1% для каждого из отыскиваемых параметров напряженного состояния. Полученные аппроксиматоры доступны в виде скрипта для MATLAB, открытого для свободного доступа через облачную платформу GitHub.
В статье рассматривается вопрос об определении величины области пластического деформирования при изучении свойств материалов при динамическом сдвиговом нагружении. В качестве примера проведено исследование поведения образцов из сплава АМг6 при динамических испытаниях на разрезном стержне Гопкинсона-Кольского с применением высокоскоростной фотокамеры Photron FASTCAM SA-Z 2100K и DIC технологии. Экспериментально определены поля сдвиговых деформаций и ширина области локализации. Значение величины области пластического деформирования, найденное путем численного моделирования, хорошо коррелирует с экспериментальными данными по определению величины данной области, полученными с использованием высокоскоростной фотокамеры и DIC технологии. Методами численного моделирования показано, что в образцах данного типа сдвиговая компонента тензора деформаций существенно преобладает над осевыми по абсолютному значению.
Приведено описание программного комплекса для математического моделирования эволюции термопороупругой среды с учетом ее разрушения. Используемая математическая модель является модификацией модели Био для случая термопороупругих сред и позволяет моделировать изменение напряженно-деформированного состояния среды, фильтрацию флюида, неизотермические эффекты, а также разрушение среды. Разрушение среды описывается с использованием подхода континуальной механики разрушения путем введения дополнительной переменной, называемой параметром повреждаемости. Этот параметр характеризует степень разрушения среды, а его эволюция определяется заданным кинетическим уравнением. Вычислительный алгоритм основан на методе конечных элементов. Дискретизация уравнений по времени производится по неявной схеме для перемещений, давления и температуры и по явной для параметра повреждаемости. В качестве конечных элементов выбраны элементы Тейлора-Худа, имеющие второй порядок аппроксимации по перемещениям и первый по давлению и температуре. Система уравнений решается в рамках “монолитной” постановки без итерационного связывания между группами уравнений. Рассмотрены результаты расчетов с использованием программного модуля на примере задачи термического воздействия на нефтяной пласт.