SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Покрывающим кодом или покрытием называется множество кодовых слов, такое что объединение шаров с центрами в этих кодовых словах покрывает все пространство. Как правило, задача состоит в минимизации мощности покрывающего кода. Для классической метрики Хэмминга размер минимального покрывающего кода фиксированного радиуса R известен с точностью до постоянного множителя. Аналогичный результат был недавно получен для кодов с R вставками и кодов с R удалениями. В данной статье изучаются покрытия пространства для метрики Левенштейна фиксированной длины, т. е. для R вставок и R удалений. Для R = 1 и 2 доказываются новые нижние и верхние оценки минимальной мощности покрывающего кода, которые отличаются лишь в константу раз.
В рамках вероятностной модели шифра рассмотрена задача разложения (декомпозиции) в некоторой ортогональной системе координат дискретного пространства Q элементарных событий на пары семейств несовместных событий, независимых с любым событием другого семейства. Показано, что для составного числа N (мощности дискретного пространства элементарных событий) существуют пары независимых подпространств пространства, а для простых чисел N независимых подпространств не существует. Построены примеры, иллюстрирующие полученные теоретические утверждения.
В статье показано, что дробная часть свертки произвольной случайной величины, принимающей значения в Z2, с дискретной равномерно распределенной на множестве
ZN × ZN распределена равномерно на том же множестве. Далее аналогичное утверждение рассматривается для случая произвольной случайной величины со значениями в R2 и абсолютно непрерывной равномерной на квадрате.