SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Приложение механики к геометрии

Популярные лекции по математике

Формат документа: pdf
Год публикации: 1965
Кол-во страниц: 57 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: О геометрии Лобачевского

Цель книги состоит в том, чтобы ознакомить читателя с основными положениями неевклидовой геометрии Лобачевского. Автор дает в книге краткий очерк жизни и деятельности Н. И. Лобачевского и останавливается на вопросе о происхождении аксиом и их роли в геометрии.

Для понимания книги необходимо знание элементарной геометрии (в ее планиметрической части) и тригонометрии в объеме курса средней школы. Кроме того, автор пользуется инверсией — специальным геометрическим преобразованием, основные свойства которого выясняются в одном из первых параграфов книги.

Автор является крупным специалистом по геометрии Лобачевского, и его книга представляет интерес не только для школьников — любителей математики, но и для студентов младших курсов педагогических институтов и университетов.

Формат документа: pdf
Год публикации: 1957
Кол-во страниц: 69 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Равновеликие и равносоставленные фигуры

Первый параграф предлагаемой вниманию читателя книжки посвящен доказательству следующей теоремы, найденной математиками Бояй и Гервином: если два многоугольника имеют одинаковую площадь, то один из них можно разбить на такие части, из которых возможно составить второй многоугольник. Более краткая формулировка: если два многоугольника равновелики, то они равносоставлены. Изучению некоторых вопросов, связанных с равносоставленностью фигур, посвящена вся книжка в целом. Она разделена на две главы, в первой из которых изучаются многоугольники, а во второй — многогранники. Сформулированная выше теорема является одной из основных в первой главе.

Во второй главе наиболее интересна теорема Дена: существуют многогранники, которые имеют одинаковый объем (равновелики), но не являются равносоставленными.

Доказательству упомянутых двух теорем, ставших уже классическими, посвящена книга Вениамина Федоровича Кагана (1869–1953) “О преобразовании многогранников”. Эта небольшая ярко написанная книжечка пользуется заслуженной известностью. Вместе с тем, доказательство теоремы Дена в книге В. Ф. Кагана несколько неэлементарно: оно использует понятие о непрерывности, свойства систем линейных уравнений и т. п.

В последнее время швейцарскими геометрами были получены новые результаты, углубляющие теоремы Бояй—Гервина и Дена. Существование этих новых результатов, а также тот факт, что книга В. Ф. Кагана стала уже редкостью, побудили автора написать новую книгу по этому вопросу.

Теоремы Бояй—Гервина и Дена доказаны соответственно в § 1 и § 5. Приведенные здесь доказательства значительно отличаются от имеющихся в книге В. Ф. Кагана. В частности, доказательство теоремы Дена отличается большей элементарностью и простотой.

В §§ 2–4, 6 приведены результаты самых последних лет (они принадлежат Хадвигеру, Глюру, Сидлеру; исключение составляет теорема, приведенная в § 4, которая, по-видимому, является новой).

Наиболее простыми в книжке являются три-четыре первых параграфа. Для их понимания требуются знания в объеме примерно вось

Формат документа: pdf
Год публикации: 1954
Кол-во страниц: 64 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Индукция в геометрии

Настоящая книжка, рассчитанная в первую очередь на учащихся старших (9-го и 10-го) классов средней школы, учителей математики и студентов физико-математических факультетов пединститутов, примыкает к книжке И. С. Соминского “Метод математической индукции”, составляющей 3-й выпуск серии “Популярные лекции по математике”, и может рассматриваться как ее продолжение; тем читателям, которые знакомы с книжкой И. С. Соминского, она будет особенно интересна.

Книжка содержит 37 примеров, решения которых подробно разобраны, и 40 задач, сопровождаемых краткими указаниями. Она посвящена разнообразным применениям метода математической индукции к решению геометрических задач. Наиболее поучительны здесь, по нашему мнению, различные аспекты метода математической индукции; отдельные (но, разумеется, не все) примеры и задачи могут также представлять и определенный самостоятельный интерес.

В основу книжки положены две лекции, прочитанные И. М. Ягломом московским школьникам — участникам школьного математического кружка при Московском государственном университете.

Формат документа: pdf
Год публикации: 1961
Кол-во страниц: 101 страница
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: О доказательствах в геометрии

Брошюра поможет разобраться учащимся в следующих вопросах: что такое доказательство и зачем нужно доказательство, каким оно должно быть и что в геометрии можно принимать без доказательства.

Формат документа: pdf
Год публикации: 1954
Кол-во страниц: 61 страница
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Задачи по геометрии. Cтереометрия

Сборник содержит 340 задач по стереометрии и состоит из двух разделов. В первом разделе помещены в основном задачи вычислительного характера. Сюда же включены в виде задач некоторые теоремы и факты стереометрии, непосредственно примыкающие к школьному курсу. Во втором разделе собраны различные геометрические факты, неравенства, задачи на геoмeтpические места точек, элементы геометрии тетраэдра и сферической геометрии. Они могут быть использованы во внеклассной работе, при подготовке к математическим олимпиадам.

Для школьников, преподавателей, студентов.

Формат документа: pdf
Год публикации: 1984
Кол-во страниц: 162 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Задачи по геометрии. Планиметрия

Книга включает около 500 задач по планиметрии, разбитых на два раздела. В первом разделе 140 сравнительно простых задач, которые сопровождаются ответами и могут бьть использованы как в классной, так и во внеклассной работе в школе. Второй раздел включает около 300 задач, собранных по тематике: задачи на вычисление, задачи на доказательство и т. д., а также 62 дополнительные задачи. Задачи этого раздела сопровождаются указаниями и подробными решениями. Они могут быть использованы во внеклассной работе, в работе школьных математических кружков при подготовке к математическим олимпиадам.

Для школьников, преподавателей, студентов.

Формат документа: pdf
Год публикации: 1982
Кол-во страниц: 162 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Основания геометрии

Книга из серии “Классики естествознания”

Формат документа: djvu
Год публикации: 1948
Кол-во страниц: 495 страниц
Загрузил(а): Старцев Вадим
Доступ: Всем
Книга: Цепные дроби

Теория цепных дробей связана с теорией приближений вещественных чисел рациональными, с теорией динамических систем, а также со многими другими разделами математики. В брошюре рассказано о связи цепных дробей с геометрией выпуклых многоугольников. Из этой связи следует, например, что цепная дробь периодична в тех и только тех случаях, когда выражаемое ей число является корнем квадратного уравнения с целыми коэффициентами. Рассказано также о том, насколько часто среди элементов цепной дроби, выражающей произвольное вещественное число, встречается единица (двойка, тройка, …).

В заключительном разделе брошюры содержится обзор результатов, связанных с многомерными обобщениями классической теории цепных дробей, полученных в последнее время.

Текст брошюры представляет собой дополненную обработку записи лекции, прочитанной автором для школьников 9—11 классов 2 декабря 2000 года на Малом мехмате МГУ.

Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей, а отчасти она будет интересна и профессиональным математикам.

Первое издание книги вышло в 2001 году

Формат документа: pdf
Год публикации: 2009
Кол-во страниц: 42 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Геометрия дискриминанта

Квадратные трёхчлены x 2 + px + q образуют двупараметрическое семейство: каждому из них соответствует точка плоскости с координатами (p, q). Дискриминантное условие p 2 4q = 0 можно рассматривать как уравнение кривой, разделяющей точки этой плоскости, соответствующие многочленам с разным числом корней. Аналогичные (но сложнее устроенные) разделяющие множества имеются и для уравнений более высоких степеней, а также для систем уравнений. Знать их геометрию очень полезно для исследования уравнений с параметрами и для решения многих других задач.

Текст брошюры представляет собой запись лекции, прочитанной автором 14февраля 2015г. на Малом мехмате МГУ для школьников 9-11 классов.

Формат документа: pdf
Год публикации: 2017
Кол-во страниц: 16 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем