SCI Библиотека
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…
Настоящее второе издание второй части книги существенно отличается от первого в двух отношениях. Прежде всего, из материала первого издания сохранены лишь разделы, посвящённые непосредственно стереометрии вместе с её “дополнительными” главами (инверсия, теорема Эйлера, правильные многогранники и группы вращений); вопросы проективной и аналитической геометрии, а также синтетической теории конических сечений, входящие во вторую часть курса Адамара (и имевшиеся в первом издании второй части), в этом втором издании опущены. В то же время во втором издании книги помещены полные решения всех имеющихся в тексте задач.
Таким образом, содержание книги во втором издании приближено к запросам тех читателей, на которых книга рассчитана, — студентов высших педагогических учебных заведений и преподавателей средней школы.
Настоящая книга представляет собой третью часть сборника задач, составленного по материалам школьного математического кружка при Московском государственном университете им. М. В. Ломоносова.
Она содержит задачи по стереометрии и задачи на разрезание и складывание фигур на плоскости и в пространстве. Как и первые две части «Избранных задач и теорем элементарной математики», настоящая третья часть состоит из условий задач, ответов и указаний и, наконец, решений. Как решения, так и ответы и указания даны ко всем задачам книги. Кроме того, там, где это необходимо, условия задач снабжены пояснениями.
Эта книга рассчитана на школьников старших классов — участников математических кружков, на руководителей школьных математических кружков, а также на руководителей и участников кружков по элементарной математике в педагогических институтах.
Значительную часть книги составляют «циклы» задач, связанных общей темой, причем задачи цикла вместе и в решении дают очень полное и законченное освещение данной геометрической задачи. Каждый такой цикл может служить темой одного-двух занятий математического кружка.
Содержит около 560 задач, снабженных подробными решениями, и 60 задач для самостоятельной работы. Большинство задач по своей тематике близки к школьной программе. Задачи разбиты на циклы, связанные общей идеей решения.
Внутри каждого цикла задачи расположены в порядке возрастания трудности. Такое разбиение поможет читателю ориентироваться в наборе задач и даст ему возможность разобраться непосредственно в заинтересовавшей его теме, не читая подряд всю книгу.
Для школьников, преподавателей, студентов педагогических институтов.
Почти шестидесятилетняя жизнь Кеплера протекала в эпоху, когда на смену схоластической науке, находившейся в полном подчинении богословию и теологической философии, возникало и пускало корни научное мировоззрение нового времени, основанное на наблюдении явлений природы, эксперименте и математической обработке полученных отсюда данных.
В планиметрии мы узнали, что между сторонами и углами треугольника имеется известная зависимость.
Теоремы о конгруэнтности треугольников обнаруживают, что треугольник вполне определён по форме и по величине, если в нём даны либо три стороны, либо две стороны и угол, между ними заключённый, либо сторона и два прилежащих угла.
Если даны две стороны и угол, противолежащий одной из них, то треугольник этими данными тоже определяется, если не однозначно, то, и не более, чем двузначно.
С точки зрения истории анализа бесконечно-малых представляет выдающийся интерес предлагаемое сочинение Кеплера — „Стереометрия бочек“ — как первая работа нового времени, вводящая в геометрию явно бесконечно малые величины и принципы интегрального исчисления. Хотя, как говорит сам Кеплер во введении, поводом и целью написания книжки первоначально явился совершенно частный и практический вопрос об измерении объема винных бочек при помощи одного промера их поперечной длины, весь интерес сосредоточивается на общих принципах определения с помощью бесконечно малых величин объемов тел вращения.
В предисловии автора к первому изданию с достаточной полнотой изложены план и содержание второго тома настоящего сочинения. Мы ограничимся, с своей стороны, только следующими замечаниями.
Вопросы, относящиеся к основаниям геометрии, в настоящее время еще усиленно разрабатываются; но не только относительно тех проблем, которые лежат на рубеже между математикой и философией, еще не достигнуто соглашения, не выработано более или менее общей точки зрения, но и возникающие здесь задачи чисто математического характера вызывают еще немало споров. С этой, именно, точки зрения мы можем рекомендовать читателю отнестись к излагаемым в настоящей книге рассуждениям.
Во многих своих частях это не установившаяся прочная истина, это — взгляды, которые можно разделять в большей или меньшей степени. С некоторыми взглядами автора мы, например, решительно не можем согласиться; так же мы не можем усвоить точки зрения автора на «натуральную геометрию».
Но автор тонко изучил обширную литературу, относящуюся к основаниям геометрии. В тех случаях, когда по тому или иному вопросу мнения особенно расходятся, он с достаточной объективностью излагает различные точки зрения. Во всяком случае, однако, читатель не всегда выносит полное удовлетворение. Это должно быть отнесено, главным образом, к трудности самого предмета.
В планиметрии мы узнали, что между сторонами и углами треугольника имеется известная зависимость. Теоремы о конгруэнтности треугольников обнаруживают, что треугольник вполне определён по форме и по величине, если в нём даны либо три стороны, либо две стороны и угол, между ними заключённый, либо сторона и два прилежащих угла.
Если даны две стороны и угол, противоположащий одной из них, то треугольник этими данными тоже определяется, если не однозначно, то, и не более, чем двузначно. Мы можем, таким образом, сказать, что всякий раз, как из шести элементов треугольника — трёх сторон и трёх углов — даны какие-либо три, они определяют уже три остальные. Единственное исключение отсюда представляют три угла, так как они не независимы друг от друга, а имеют постоянную сумму в два прямых.
Три угла фактически составляют, таким образом, только два данных, а потому они недостаточны для определения треугольника. В более общем виде можно было бы сказать, что всякий раз, как между шестью элементами треугольника имеются известные связи, треугольник определяется либо однозначно, либо многозначно. Для конструктивных оборотов, рассматриваемых в геометрии, всегда требуется однозначное определение треугольника; например, в треугольных построениях, на вписанной или описанной окружности и т. д.
При изучении стереометрии приходится изображать на плоскости пространственные фигуры. Большинство школьников выполняют эти чертежи как попало, без всяких правил. В этой брошюре, рассчитанной на школьников старших классов, излагается теория изображения пространственных фигур на плоскости и приводятся примеры, соответствующие тематике школьного курса стереометрии.