SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Справочник по математике для научных работников и инженеров

Справочник по математике (для научных работников и инженеров). Г. Корн, Т. Корн. «Справочник» содержит сведения по следующим разделам: высшая алгебра, аналитическая и дифференциальная геометрия, математический анализ (включая интегралы Лебега и Стилтьеса), векторный и тензорный анализ, криволинейные координаты, функции комплексного переменного, операционное исчисление, дифференциальные уравнения обыкновенные и с частными производными, вариационное исчисление, абстрактная алгебра, матрицы, линейные векторные пространства, операторы и теория представлений, интегральные уравнения, краевые задачи, теория вероятностей и математическая статистика, численные методы анализа, специальные функции.

В настоящем издании заново написаны главы 11, 20 и значительная часть глав 13 и 18. Книга пополнилась значительным количеством новых разделов.

Формат документа: pdf, djvu
Год публикации: 1973
Кол-во страниц: 832 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Методы решения интегральных уравнений: Справочник.

В книге излагаются точные, приближенные аналитические и численные методы решения линейных и нелинейных интегральных уравнений. Помимо классических методов описаны также некоторые новые методы.

Для лучшего понимания рассмотренных методов во всех разделах книги даны примеры решения конкретных уравнений. Приведены некоторые точные и асимптотические решения интегральных уравнений, встречающихся в приложениях (в механике и физике).

Справочник предназначен для широкого круга научных работников, преподавателей вузов, аспирантов и студентов, специализирующихся в различных областях прикладной математики, механики, физики, теории управления и инженерных наук.

Формат документа: pdf, djvu
Год публикации: 1999
Кол-во страниц: 272 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Справочник по дифференциальным уравнениям в частных производных первого порядка

Книга Э. Камке является единственным в мировой литературе справочником по дифференциальным уравнениям в частных производных первого порядка для одной неизвестной функции. В ней дается конспективное изложение важнейших разделов теории и собрано около 500 уравнений с решениями.

Книга предназначена для широкого круга научных работников и инженеров, сталкивающихся в своей практической деятельности с дифференциальными уравнениями. Значение этого справочника особенно велико в связи с тем, что в настоящее время на русском языке нет книги, в которой бы всесторонне и полно освещалась теория вопроса.

Формат документа: pdf, djvu
Год публикации: 1966
Кол-во страниц: 260 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Таблицы интегралов, сумм, рядов и произведений (4-е изд.)

Книга представляет собой большое собрание интегралов и формул (около 12 000), относящихся к элементарным и специальным функциям. В четвертом издании значительно расширены разделы, посвященные неопределенным и определенным интегралам от элементарных функций и определенным интегралам от специальных функций.

Включены интегралы от специальных функций, отсутствовавшие в предыдущем издании. В связи с этим главы, относящиеся к специальным функциям, дополнены необходимыми разделами. Глава об интегральных преобразованиях, имевшаяся в третьем издании, исключена. Ее материал размещен в других частях книги.

Книга предназначена для научно-исследовательских институтов, лабораторий, конструкторских бюро и научных работников в области математики, физики, техники.

Формат документа: pdf, djvu
Год публикации: 1963
Кол-во страниц: 685 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Интегральные преобразования и операционное исчисление

Настоящий выпуск серии «Справочная математическая библиотека» посвящен интегральным преобразованиям и операционному исчислению. В первой части изложены основы теории интегральных преобразований Фурье, Лапласа, Меллина, Бесселя, Ханкеля, Мейера, Конторовича — Лебедева и др.

Особое внимание уделено преобразованию Лапласа и его применению к математическому анализу. Операционное исчисление излагается на основе теории Микулинского с некоторыми её видоизменениями. Указывается, как оно связано с преобразованием Лапласа, и приводятся примеры реализации конкретных операторов.

Вторую часть составляют таблицы интегральных преобразований (косинус- и синус-преобразования Фурье, преобразования Лапласа, Меллина, Ханкеля, Конторовича — Лебедева и Мейера — Фока). Представленные таблицы были использованы в справочных руководствах и работах, опубликованных в периодической литературе. Некоторые результаты публикуются впервые. Книга предназначена для математиков, физиков, инженеров, интересующихся вопросами прикладной математики.

Формат документа: pdf, djvu
Год публикации: 1961
Кол-во страниц: 524 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Справочник по высшей математике (12-е изд.)

Эта книга составляет продолжение Справочника по элементарной математике того же автора и включает весь материал, входящий в программу основного курса математики высших технических учебных заведений (механико-машиностроительных, строительных, авиационных, транспортных, электротехнических, энергетических и горнометаллургических).

Книга имеет двоякое назначение.

Во-первых, она дает фактическую справку: что такое векторное произведение, как найти поверхность тела вращения, как разложить функцию в тригонометрический ряд и т. п. Соответствующие определения, теоремы, правила и формулы, сопровождаемые примерами и практическими указаниями, находятся быстро; этой цели служат детальная рубрикация и подробный алфавитный указатель.

Формат документа: pdf, djvu
Год публикации: 1977
Кол-во страниц: 873 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Справочник по элементарной математике

Этот справочник имеет двоякое назначение.

Во-первых, здесь можно навести «моментальную» справку: что такое общий наибольший делитель, что такое тангенс и т. п., как вычислить процент, как построить правильный пятиугольник и т. п.; каковы формулы для корней квадратного уравнения, для объема усеченного конуса и т. п. Все определения, правила, формулы и теоремы сопровождаются примерами; при этом особое внимание уделяется примерам практического характера. Всюду, где это требуется, указывается, в каких случаях и как надо применять то или иное правило, каких ошибок надо избегать и т. п.

Во-вторых, этот справочник, по замыслу автора, мог бы служить общедоступным пособием для повторения курса элементарной математики и даже для первого ознакомления с ее практическими применениями.

Формат документа: pdf, djvu
Год публикации: 1966
Кол-во страниц: 404 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Математическая энциклопедия. Том 5.

СЛУЧАЙНАЯ ВЕЛИЧИНА Одно из основных понятий теории вероятностей. Роль понятий случайной величины (С. В.) и ее математического ожидания впервые ясно оценил П. Л. Чебышев (1867, см. 1). Понимание того факта, что понятие С. В. есть частный случай общего понятия функции, пришло значительно позже. Полное и свободное от всяких излишних ограничений изложение основ теории вероятностей на основе теории меры дано А. Н. Колмогоровым (1933, см. 2); оно сделало совершенно очевидным, что С. В. есть ни что иное, как измеримая функция на каком-либо вероятностном пространстве. Это обстоятельство весьма важно учитывать даже при первоначальном изложении теории вероятностей.

В учебной литературе эта точка зрения, последовательно проведенная впервые У. Феллером (см. предисловие к 3), где изложение строится на понятии пространства элементарных событий и подчеркивается, что лишь в этом случае представление о С. В. становится содержательным.

Формат документа: pdf, djvu
Год публикации: 1977
Кол-во страниц: 1052 страницы
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Математическая энциклопедия. Том 4.

ОКА ТЕОРЕМЫ - Теоремы о классических проблемах теории функций многих комплексных переменных, впервые доказанные К. Ока в 1930–1950 гг. 1) Ока теорема о Кузена проблемах: - Первая проблема Кузена разрешима в любой области голоморфности в Сⁿ; - Вторая проблема Кузена разрешима в любой области голоморфности D ⊆ Сⁿ, гомеоморфной D₁ × … × Dₙ, где все области Dᵥ ⊆ С, кроме, возможно, одной, односвязны.

Формат документа: pdf, djvu
Год публикации: 1977
Кол-во страниц: 1098 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем
Книга: Математическая энциклопедия. Том 3.

Числа, величины, по которым находится (определяется) положение какого-либо элемента (точки) в некоторой совокупности (множестве M), например, на плоскости, поверхности, в пространстве, на многообразии.

В ряде разделов математики и физики координаты именуются по-другому, например, координаты элемента (вектора) векторного пространства называются его компонентами, координаты в произведении множеств — проекциями на один из его множителей, в теории относительности системы координат — это системы отсчета и т. п.

Часто встречается ситуация, когда ввести достаточно разумные и удобные координаты глобально на всем множестве невозможно (например, точка сферы в отличие от плоскости нельзя взаимно однозначно и непрерывно связать с парами чисел), и тогда вводят понятие локальных координат. Таково, например, положение в теории многообразий.

Формат документа: pdf, djvu
Год публикации: 1977
Кол-во страниц: 1075 страниц
Загрузил(а): Арбатова Юлия
Доступ: Всем