Теория несамосопряжённых операторов необходима для математического изучения процессов, которые возникают в неконсервативных системах, играющих большую роль в современной физике и механике. Эта молодая, интенсивно развивающаяся ветвь математики, ещё не успела получить достаточное освещение в литературе.
В книге впервые даётся развернутое изложение ряда методов теории несамосопряжённых операторов в гильбертовом пространстве (метод оценок резольвенты, метод определителей возмущения, различные асимптотические методы и др.). Попутно излагаются новые методы получения различных оценок, неравенств и соотношений для собственных и сингулярных чисел вполне непрерывных операторов. С использованием этих методов даётся полная теория симметрично нормированных идеалов вполне непрерывных операторов, в частности, таких важных, как ядерные операторы, операторы Гильберта — Шмидта и др. Материал книги может быть использован в университетских курсах линейной алгебры, интегральных уравнений и функционального анализа.
Книга адресована научным работникам, аспирантам и студентам старших курсов — математикам, механикам и физикам-теоретикам.