SCI Библиотека

SciNetwork библиотека — это централизованное хранилище научных материалов всего сообщества... ещё…

Книга: Шашкин Ю.А. » Неподвижные точки

Теорема о неподвижной точке есть утверждение о том, что некоторое уравнение (или система уравнений) имеет решение. Доказываются топологические теоремы о неподвижных точках непрерывных отображений отрезка, квадрата, окружности и сферы. В доказательствах используются различные формы комбинаторно-геометрической леммы Шпернера и понятие степени отображения.

Для школьников старших классов и студентов младших курсов вузов.

Формат документа: pdf, djvu
Год публикации: 1989
Кол-во страниц: 81 страница
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: О решении уравнений высших степеней

В курсе алгебры средней школы выводится формула для решения квадратного уравнения, а из курса физики видно, насколько необходима эта формула для решения многих физических вопросов (например, в задачах, связанных с равноускоренным движением, и т. д.).

Не меньшую роль, чем квадратные уравнения, играют в математике и ее приложениях уравнения третьей и более высоких степеней. Люди почти так же давно начали заниматься уравнениями высших степеней, как и квадратными уравнениями. Известны вавилонские клинописные таблички, в которых решаются некоторые кубические уравнения. Несмотря на то, что этим вопросом занимались так давно, основные факты об уравнениях высших степеней были открыты только в XIX веке. Эта лекция посвящена обзору некоторых основных свойств уравнений высших степеней.

Способ, которым мы будем выводить свойства уравнений высших степеней, резко отличается от того способа, при помощи которого в курсе алгебры средней школы выводят свойства квадратных уравнений. Почти все свойства квадратных уравнений выводятся из формулы для их решения, мы же не будем выводить формулу для решения уравнений высших степеней, а получим их свойства из некоторых общих алгебраических и геометрических соображений.

Дело в том, что для большинства уравнений высших степеней не существует такой формулы, как для уравнений второй степени. В тех же случаях, где такая формула есть, она настолько сложна, что из нее невозможно вывести никаких свойств уравнения. Но и независимо от этого, наш путь имеет еще одно преимущество: он делает более ясной истинную причину тех фактов, которые доказываются.

Все рассуждения, которые здесь будут приведены, годятся для уравнений любой степени. Часто они будут изложены в общем виде. В некоторых же случаях, когда рассуждение в общем случае принципиально то же, но удлиняет выкладку, мы будем приводить его лишь для уравнений третьей степени и только формулировать то, что получится в общем случае. Очень рекомендуется провести все рассуждения самостоятельно в общем случае.

Наконец, совсем выпущены д

Формат документа: pdf, djvu
Год публикации: 1954
Кол-во страниц: 24 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Сборник старинных задач по элементарной математике с историческими экскурсами и подробными решениями

Опыт показывает, что использование старинных задач на уроках и внеклассных занятиях вызывает интерес к математике, побуждает детей к самостоятельному творчеству, проявлению инициативы н смекалки, дает естественный повод для небольших исторических экскурсов о их составителях, которые, как правило, были крупнейшими математиками своей эпохи, и о состоянии математических дисциплин далекого прошлого.

Автор будет весьма признателен тем, кто сообщит о замеченных в настоящей книге недостатках и поделится своим опытом использования старинных задач по элементарной математике в процессе преподавания.

Формат документа: pdf, djvu
Год публикации: 1962
Кол-во страниц: 205 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: О доказательствах в геометрии

Брошюра поможет разобраться учащимся в следующих вопросах: что такое доказательство и зачем нужно доказательство, каким оно должно быть и что в геометрии можно принимать без доказательства.

Формат документа: pdf, djvu
Год публикации: 1954
Кол-во страниц: 61 страница
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Задачи устного экзамена по математике

Настоящее пособие составлено для подготовительных курсов факультета вычислительной математики и кибернетики МГУ им. М.В.Ломоносова. Может быть полезно абитуриентам при подготовке к поступлению как на факультет ВМИК, так и на другие факультеты МГУ, где есть устный экзамен по математике.

Формат документа: pdf, djvu
Год публикации: 2000
Кол-во страниц: 132 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Метод математической индукции

Часто при решении задач возникает вопрос о справедливости некоторого утверждения, которое верно в нескольких случаях, но все частные случаи рассмотреть невозможно. Этот вопрос иногда удается решить посредством применения особого метода рассуждений, называемого методом математической индукции.
В брошюре приведено доказательство принципа мат. индукции, а также большое число задач с решениями на применение этого метода.

Формат документа: pdf, djvu
Год публикации: 1965
Кол-во страниц: 60 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Треугольник Паскаля

Настоящая лекция доступна учащимся восьмилетней школы. В ней рассматривается одна важная числовая таблица (которая и называется треугольником Паскаля), полезная при решении ряда задач. Попутно с решением таких задач затрагивается вопрос, что означают слова “решить задачу”.

Предыдущее издание вышло в 1966 г.

Формат документа: pdf, djvu
Год публикации: 1979
Кол-во страниц: 52 страницы
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Тероема Гёделя о неполноте

Есть в математике темы, пользующиеся достаточной известностью и в то же время признаваемые традицией слишком сложными (или маловажными) для включения в обязательное обучение: обычай относит их к занятиям факультативным, дополнительным, специальным и т. п. В перечне таких тем есть несколько, остающихся сейчас там исключительно в силу инерции. Одной из них является теорема Гёделя.

Несмотря на то, что очень многие математики (и нематематики) слышали о ней, мало кто из них может объяснить, в чем состоит утверждение теоремы Гёделя и тем более как она доказывается. Вместе с тем результат столь важен, а причины, вызывающие неустранимую неполноту (т. е. невозможность добиться того, чтобы каждое истинное утверждение было доказуемо), столь просты, что теорема Гёделя могла бы излагаться на самых младших курсах. Более того, для понимания доказательства необходимо лишь знакомство с простейшей терминологией теории множеств (словами “множество”, “функция”, “область определения” и тому подобными) и некоторая привычка к восприятию математических рассуждений, так что оно вполне доступно подготовленному школьнику.

Излагаемый в этой брошюре способ доказательства теоремы Гёделя отличен от способа, предложенного самим Гёделем, и опирается на элементарные понятия теории алгоритмов. Все необходимые сведения из этой теории сообщаются по ходу дела, так что читатель одновременно знакомится с основными фактами теории алгоритмов. Брошюра написана на основе статьи автора в журнале “Успехи математических наук”, 1974, том 29, выпуск 1 (175). Естественно, что изменение круга предполагаемых читателей сделало необходимой ее переработку. В частности, некоторые более специальные вопросы, а также библиографические ссылки на оригинальные публикации исключены, и любознательный читатель может найти их в упомянутой статье автора. Одновременно расширен раздел, посвященный связи между семантической и синтаксической формулировками теоремы о неполноте, а также добавлены приложения, посвященные теореме Тарского о невыразимости понятия истины и обоснован

Формат документа: pdf, djvu
Год публикации: 1982
Кол-во страниц: 114 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Машина Поста

Машина Поста — это хотя и абстрактная (т. е. не существующая в арсенале действующей техники), но зато очень простая вычислительная машина. Она способна выполнять лишь самые элементарные действия, и потому ее описание и составление простейших программ может быть доступно ученикам начальной школы. Тем не менее на машине Поста можно запрограммировать — в известном смысле — любые алгоритмы. Изучение машины Поста можно рассматривать как начальный этап обучения теории алгоритмов и программированию.

Формат документа: pdf, djvu
Год публикации: 1988
Кол-во страниц: 100 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем
Книга: Системы линейных неравенств

В книге рассказывается о связи между системами лилейных неравенств и выпуклыми многогранниками, дается описание множества всех решений системы линейных неравенств, изучаются вопросы совместности и несовместности; наконец, дается понятие о линейном программировании как об одной из глав теории систем линейных неравенств. В последнем параграфе дается доказательство теоремы двойственности линейного
программирования.

Кинга рассчитана на школьников старших классов и всех любителей математики.

Формат документа: pdf, djvu
Год публикации: 1977
Кол-во страниц: 116 страниц
Загрузил(а): Афонин Сергей
Доступ: Всем