На основе метода матрицы переноса разработана численная модель по расчету спектров пропускания и отражения многослойных эпитаксиальных гетероструктур для спектрального диапазона, в котором отсутствует высокое поглощение в материале. Проведен численный анализ зависимостей целевой длины волны излучения, ширины стоп-зоны и величины коэффициента пропускания брэгговских зеркал от технологических параметров структуры и различных полупроводниковых материалов, используемых в оптоэлектронике. Корректность получаемых результатов была установлена из сравнения расчетных спектров пропускания с измеренными спектрами для зеркал, изготовленных на основе гетеропары Pb1-xEuxTe/EuTe с составами x < 0,1 для спектрального диапазона от 3,5 до 5 мкм. Из расчетов показано, что данные материалы обладают высоким оптическим контрастом в гетеропаре от 0,37 до 0,39, пропускание зеркал в стоп-зоне составляет менее 5 % для трех пар, для четырех пар – менее 1 %. Ширина стоп-зоны для нужного спектрального диапазона находится в пределах от 1100 см-1 до 1400 см-1.
Изучены свойства спектров рентгеновского дифракционного отражения многослойных периодических гетероструктур AlGaAs/GaAs в зависимости от толщины и состава материала слоев и количества периодов. Показано, что количество и интенсивность дополнительных дифракционных максимумов на кривых качания возрастает с увеличением толщины слоев и количества периодов. Состав слоев не влияет на количество максимумов, а изменяет их угловое положение и полуширину. Проводилось сравнение численных расчетов с экспериментальными спектрами, измеренными для гетероструктуры, выращенной методом молекулярнопучковой эпитаксии и состоящей из 50 периодов, в которых барьер AlxGa1-xAs имел состав x 26,7 % и толщину d 51,6 нм, а квантовая яма GaAs – толщину d 4,6 нм. Установлено хорошее соответствие рассчитанных параметров с технологическими данными и результатами измерения на просвечивающем электронном микроскопе.
Методами нейтронографии и высокоразрешающей рентгеновской дифрактометрии исследованы структурные характеристики гетероструктур на основе гетеропары InGaAs/GaAs, в том числе многослойной периодической гетероструктуры с квантовыми ямами InGaAs, содержащей 30 периодов. Продемонстрированы необходимость измерения карт обратного пространства около симметричных и асимметричных узлов отражения в дополнение к кривым дифракционного отражения для выявления качественных и количественных параметров кристаллической структуры гетероэпитаксиальных материалов, а также возможность применения такого измерения не только для гетероструктур, представляющих собой одиночный слой на подложке, а также для многослойных периодических эпитаксиальных структур. По результатам измерений методом рентгеновской дифрактометрии вычислены параметры кристаллических решёток слоёв InGaAs и GaAs в вертикальном и латеральном направлениях относительно плоскости поверхности подложки, толщины слоёв l и состав x твёрдого раствора InxGa1-xAs в гетероструктурах, оценена степень релаксации слоёв по измерениям карт обратного пространства около асимметричных узлов отражения. Методом нейтронографии была измерена многослойная гетероструктура, получен профиль толщины слоёв сверхрешётки по глубине структуры, оценены средние значения толщин квантовых ям InGaAs и барьеров GaAs. Установлено соответствие между результатами измерений средних толщин слоёв и периода сверхрешётки для многослойной периодической гетероструктуры различными методами, а также с технологическими ростовыми данными.
Приборы ночного видения с расширенной областью чувствительности от 0,4 мкм до 2,0 мкм имеют важнейшее значение для научных, гражданских и специальных применений. Приведены архитектура и основные характеристики матричного фотосенсора формата 640512 (шаг 15 мкм) с расширенной областью чувствительности (0,4–2,0 мкм), разработанного на основе коллоидных квантовых точек ККТ PbS. Основная часть фототока генерируется в слое ККТ n-PbS-TBAI. Этот слой изготовлен путем замены исходного лиганда (олеиновая кислота) на йод при обработке слоя ККТ иодидом тетра-н-бутиламмония (TBAI). Слой, блокирующий электроны (транспортный слой для дырок), создавался на основе p-NiOx. Слой, блокирующий дырки (транспортный слой для электронов), изготавливался на основе n-ZnO.