Цель. Формализовать научную задачу количественного оценивания устойчивости функционирования объектов критической информационной инфраструктуры, подверженных воздействию угроз нарушения их информационной безопасности.
Методы. Познавательные методы: системного анализа, индуктивно-дедуктивный, анализ научной задачи, формализации научных знаний, построения гипотез. Операционные методы: абстрагирование, конкретизация, сравнение, обобщение, аналогия, моделирования, методы экспертного оценивания.
Результаты. Обоснована актуальность, сформулирована вербальная и формальная постановки научной задачи количественного оценивания устойчивости функционирования объектов критической информационной инфраструктуры, предложены показатели для оценивания исходных данных и получаемого результата.
Заключение. Осуществлен системный анализ проблемной ситуации, что позволило выявить объективные основания актуальности решения научной задачи, осуществить ее формальную постановку, обосновать выбор управляемых и неуправляемых факторов для оценивания устойчивости, сформулировать ограничения, предложить способ учета динамики критической информационной инфраструктуры в результате воздействия угроз нарушения ее информационной безопасности.
Для принятия решения по обеспечению безопасности информационной инфраструктуры (ИИ) в целях ее устойчивого функционирования в условиях воздействия угроз требуется инструмент, позволяющий оценить устойчивость функционирования ее отдельных элементов. Применение полумарковской модели для оценивания устойчивости функционирования элементов ИИ, подверженной воздействию угроз, в прямой постановке сопряжено с ростом сложности описания объекта моделирования (параметрического пространства) в степенной прогрессии от числа учитываемых воздействий, что снижает ее практическую значимость. Однако в научной литературе не обнаружено исследований по снижению сложности полумарковской модели. В статье приведен подход к снижению сложности моделирования посредством принятия корректных допущений при формировании исходных данных. Приведены условия, при которых возможно принять ряд допущений, позволяющих значительно снизить сложность моделирования, платой за это является ограничение области применимости модели. Приводится постановка задачи и модифицированный граф переходов. Новизна постановки задачи заключается в учете ограничений на имеющийся ресурс для восстановления функциональности элемента. Для пояснения физической сущности процесса моделирования приводится мысленный эксперимент с моделью. Для решения задачи были использованы: а) экспертные методы для добывания исходных данных; б) математические модели частных полумарковских процессов; в) методы преобразований Лапласа; г) методы планирования эксперимента. Демонстрация последовательности решения задачи сопровождается иллюстративными примерами и графиками. В результате эксперимента были выявлены закономерности исследуемого процесса, существование которых было доказано формально. Исследование показало, что при принятии мотивированных допущений возможно снизить сложность моделирования. Результаты исследования расширяют знания о приложении методов марковских процессов для оценивания устойчивости функционирования элементов ИИ применительно к условиям воздействия угроз.