В настоящей работе приведены результаты исследований получения пептидного модуля функциональной направленности, обогащенного микроэлементом цинком и таурином для профилактики гиперлипидемии и ожирения. Пептидный модуль получали путем биотехнологической модификации мягких тканей двустворчатого моллюска Дальневосточного региона Anadara broughtonii с использованием ферментного препарата - протеаза щелочная протозим В, условия процесса - рН 7,0-7,2, температуре 50 0С, продолжительность 24 ч. Обогащение цинком проводили реакцией комплексообразования путем внесения в пептидный модуль 20%-ного водного раствора ZnCl2 в соотношении по массе 6,25 × азот в жидкой фракции : хлорид цинка = 10:1. Условия процесса: температура 20-25°С, продолжительность 60 мин, рН 7,0-7,1. Содержание высокомолекулярной фракции (массой более 160 кДа) было низким и составляло не более 1,2%. Максимально представленными фракциями являются низкомолекулярные фракции с массами 6,5-12,5 кДа, 12,5-18 кДа и 1,4-6,5 кДа. Низкомолекулярные фракции массой не более 24 кДа максимально определены в пептидном модуле мантии - 89,3%. Полученные пептидные модули имели достаточно высокое содержание таурина - 28,48-30,15% от суммы аминокислот. Максимально из незаменимых аминокислот представлены лейцин, лизин, валин, изолейцин, условно-незаменимая аминокислота аргинин. Максимальное связывание микроэлемента цинка как в пептидном модуле мускула, так и мантии, происходит во фракциях с молекулярными массами 12,5-18 кДа и 6,5-12,5 кДа. Суммарно 81,1% (мускул) и 83,7% (мантия) цинка связано в низкомолекулярных фракциях массами от 24 до менее 1,4 кДа. Минимальная массовая доля цинка определена в высокомолекулярных фракциях массами более 160кДа и 67-160 кДа - суммарно 4,2% (мантия) и 4,5% мускул. Использование в пищевых системах полученных пептидных модулей, обогащенных цинком и таурином, будет оказывать влияние на метаболический синдром, в том числе и на профилактику гиперлипидемии и ожирения.
Морские водоросли являются уникальным сырьем, которое способно в достаточно короткие сроки формировать значительную биомассу, осуществлять синтез разнообразных химических соединений, в том числе и специфических биологически активных веществ, проявляющих различную биологическую активность. Изучение антиоксидантных, антибактериальных, антивирусных, противовоспалительных и других свойств биологически активных веществ бурых водорослей является актуальной задачей.
Целью представленного исследования являлась оценка антиоксидантных свойств сверхкритических экстрактов бурых водорослей Saccharina japonica и Ascophyllum nodosum.
Содержание каротиноидов, фенольных соединений, маннита определяли спектрофотометрическим методом. Исследование содержания металлов осуществляли с применением метода атомно-абсорбционной спектрометрии. Антиоксидантную активность оценивали по антирадикальной активности с использованием радикала 2,2-дифенил-1-пикрилгидразила, гидроксил-ион связывающей и Fe+2 хелатирующей активностям, а также по активности поглощения супероксидных радикалов. В исследованных сверхкритических экстрактах бурых водорослей определено достаточно высокое содержание жирных кислот и фенольных соединений, причем жирные кислоты максимально представлены в сверхкритическом экстракте Ascophyllum nodosum, а фенолы, маннит и пигменты – в экстракте Saccharina japonica. Преобладающим макроэлементом в сверхкритических экстрактах бурых водорослей является калий с максимумом содержания в экстракте Saccharina japonica. Сверхкритические экстракты бурых водорослей являются безопасными по содержанию нитрозаминов, полихлорированных бифенилов, токсичных элементов и радионуклидов. Наиболее выраженные антирадикальные свойства продемонстрировал сверхкритический экстракт Saccharina japonica. Самая высокая гидроксил-ион связывающая активность отмечена для сверхкритического экстракта Saccharina japonica. В отношении активности поглощения супероксидных радикалов закономерности были иными: максимальную активность продемонстрировал экстракт Ascoph