Solar cells are very prone to scratches, hot spots, breakage and other defects during the production process, which seriously affects their service life and photoelectric conversion efficiency. Traditional detection methods cannot meet the accuracy and real-time requirements of the actual industrial production. To address the problems of low detection accuracy, slow speed, and single type of detected defects in solar cell defect detection, this paper proposes a solar cell defect detection algorithm based on improved YOLOv8s, which is based on the original YOLOv8s network model, and introduces the GAM global attention mechanism module and the EIoU-Focal loss function. The experimental results show that compared with other algorithms, the mAP@0.5 of the improved YOLOv8s reaches 85.1%, and the algorithm has a better improvement in detection accuracy and detection effect, which can complete the task of detecting defects in solar cells more quickly and accurately.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.