В данной работе представлено исследование задачи автоматической классификации коротких связных текстов (эссе) на английском языке по уровням международной шкалы CEFR. Определение уровня текста на естественном языке является важной составляющей оценки знаний учащихся, в том числе для проверки открытых заданий в системах электронного обучения. Для решения этой задачи были рассмотрены векторные модели текста на основе стилометрических числовых характеристик уровня символов, слов, структуры предложения. Классификация полученных векторов осуществлялась стандартными классификаторами машинного обучения. В статье приведены результаты трёх наиболее успешных: Support Vector Classifier, Stochastic Gradient Descent Classifier, LogisticRegression. Оценкой качества послужили точность, полнота и F“=мера. Для экспериментов были выбраны два открытых корпуса текстов CEFR Levelled English Texts и BEA“=2019. Лучшие результаты классификации по шести уровням и подуровням CEFR от A1 до C2 показал Support Vector Classifier с F“=мерой 67 % для корпуса CEFR Levelled English Texts. Этот подход сравнивался с применением языковой модели BERT (шесть различных вариантов). Лучшая модель bert“=base“=cased обеспечила значение F“=меры 69 %. Анализ ошибок классификации показал, что большая их часть допущена между соседними уровнями, что вполне объяснимо с точки зрения предметной области. Кроме того, качество классификации сильно зависело от корпуса текстов, что продемонстрировало существенное различие F“=меры в ходе применения одинаковых моделей текста для разных корпусов. В целом, полученные результаты показали эффективность автоматического определения уровня текста и возможность его практического применения.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.