В работе рассматривается решение многомерных задач многоэкстремальной оптимизации с использованием деревьев решений для выявления областей притяжения локальных минимумов. Целевая функцияпредставлена как «черный ящик», она может быть недифференцируемой, многоэкстремальной и вычислительно трудоемкой. Для функции предполагается, что она удовлетворяет условию Липшица с априоринеизвестной константой. Для решения поставленной задачи многоэкстремальной оптимизации применятсяалгоритм глобального поиска. Хорошо известно, что сложность решения существенно зависит от наличия нескольких локальных экстремумов. В данной работе предложена модификация алгоритма, в которойопределяются окрестности локальных минимумов целевой функции на основе анализа накопленной поисковой информации. Проведение такого анализа с использованием методов машинного обучения позволяетпринять решение о запуске локального метода, что может ускорить сходимость алгоритма. Данный подход был подтвержден результатами численных экспериментов, демонстрирующих ускорение при решениинабора тестовых задач.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.