В медицинской практике первичную диагностику заболеваний следует проводить быстро и по возможности автоматически. Обработка многомодальных данных в медицине стала повсеместно распространеннымметодом классификации, прогнозирования и обнаружения заболеваний. Пневмония - одно из наиболее распространенных заболеваний легких. В нашем исследовании для выявления пневмонии мы использовалирентгенограммы органов грудной клетки в качестве первой модальности и результаты лабораторных исследований пациента в качестве второй модальности. Архитектура многомодальной модели глубокого обучениябыла основана на промежуточном слиянии. Модель обучалась на сбалансированных и несбалансированныхданных, когда наличие пневмонии определялось в 50% и 9% от общего числа случаев соответственно. Дляболее объективной оценки результатов мы сравнили производительность нашей модели с несколькими другими моделями с открытым исходным кодом на наших данных. Эксперименты демонстрируют высокуюэффективность предложенной модели выявления пневмонии по двум модальностям даже в случаях несбалансированных классов (до 96.6%) по сравнению с результатами одномодальных моделей (до 93.5%). Мысделали несколько интегральных оценок производительности предлагаемой модели, чтобы охватить и исследовать все аспекты многомодальных данных и особенностей архитектуры. Были показатели точности,ROC AUC, PR AUC, показателя F1 и коэффициента корреляции Мэтьюса. Используя различные метрики, мы доказали возможность и целесообразность использования предложенной модели с целью правильнойклассификации заболевания. Эксперименты показали, что производительность модели, обученной на несбалансированных данных, даже немного выше, чем у других рассмотренных моделей.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.