Огромный объем данных, создаваемых процедурами Интернета вещей, требует вычислительной мощности и места для хранения, предоставляемого облачными, периферийными и туманными вычислительными системами. Каждый из этих способов вычислений имеет как преимущества, так и недостатки. Облачные вычисления улучшают хранение информации и вычислительные возможности, одновременно увеличивая задержку соединения. Периферийные и туманные вычисления предлагают аналогичные преимущества с уменьшенной задержкой, но имеют ограниченное хранилище, емкость и покрытие. Первоначально оптимизация применялась для решения проблемы сброса трафика. И наоборот, традиционная оптимизация не может удовлетворить жесткие требования к задержке принятия решений в сложных системах, варьирующейся от миллисекунд до долей секунды. В результате алгоритмы машинного обучения, особенно обучение с подкреплением, набирают популярность, поскольку они могут быстро решать проблемы разгрузки в динамических ситуациях, включающих определенные неопознанные данные. Мы проводим анализ литературы, чтобы изучить различные методы, используемые для решения этой интеллектуальной задачи по разгрузке задач с учетом задержек для облачных, периферийных и туманных вычислений. Уроки, полученные в результате этих исследований, затем представлены в настоящем отчете. Наконец, мы определяем некоторые дополнительные возможности для изучения и проблемы, которые необходимо преодолеть, чтобы достичь минимальной задержки в системе разгрузки задач.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.