В условиях динамично развивающейся экономики, подверженной влиянию глобальной неопределенности, использование методов искусственного интеллекта позволяет строить продвинутые адаптивные модели, основанные на нелинейном взаимодействии переменных, и разрабатывать на их основе более точные экономические прогнозы и сценарии социально-экономического развития, чем с применением стандартных эконометрических и статистических методов. Исследование посвящено нейросетевому моделированию и прогнозированию валового регионального продукта субъекта Российской Федерации (на примере Нижегородской области). Информационной базой послужили региональные и макроэкономические данные Росстата, Банка России и онлайн портала Investing. com за 2000–2023 гг. Теоретико-методологической основой исследования явились расширенная производственная функция Кобба – Дугласа, базовые концепции региональной экономики и нейросетевого моделирования. Использование информации по регионам со схожей отраслевой структурой и масштабам экономики позволило увеличить массив данных для обучения моделей. В результате исследования построены две модели ВРП Нижегородской области: базовая, основанная на ограниченном количестве входных параметров и данных регионов-бенчмарков, согласно Стратегии развития области; и расширенная, основанная на большем количестве входных параметров и данных регионов одного с Нижегородской областью кластера. На их основе разработаны три прогноза ВРП Нижегородской области на 2025–2027 гг.: реалистический, оптимистический и пессимистический. Результаты по реалистическому сценарию оказались близкими к прогнозу областного правительства. Кроме того, расширенная модель позволила получить более точные прогнозы. Результаты и выводы исследования могут быть полезны при составлении прогнозов и управлении социально-экономическим развитием РФ и ее регионов
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.