Архив статей

Применение искусственного интеллекта для реализации алгоритмов потенциала негативности рассогласования в промышленных автоматизированных системах прогнозируемого обслуживания (2025)
Выпуск: Том 29, № 3 (2025)
Авторы: Чесалов Александр Юрьевич

Постановка проблемы. Одна из актуальных проблем промышленной автоматизации заключается в том, что работа немногих имеющихся на Российском рынке систем прогнозируемого обслуживания, как правило, основывается на сборе и анализе данных оборудования без учета совместного воздействия внутренних и внешних факторов. В текущих экономических условиях необходим обоснованный выбор и применение новых технологий искусственного интеллекта для исследования и реализации базовых принципов потенциала негативности рассогласования, которые откроют новые горизонты для повышения эффективности и надежности промышленных автоматизированных систем прогнозируемого или предписывающего обслуживания многостадийных технологических процессов. Моделирование автоматических реакций на изменения окружающей среды и прогнозирование отказов позволит создать адаптивные системы, которые существенно снизят риски возникновения сбоев и аварий, а также будут способствовать оптимизации производственных ресурсов и снижению эксплуатационных затрат.

Цель. Исследовать возможность применения технологий искусственного интеллекта для реализации алгоритмов, созданных на основе потенциала негативности рассогласования (англ. mismatch negativity, MMN) и возможности их применения в промышленных автоматизированных системах прогнозируемого или предписывающего обслуживания, а также разработать базовый MMN-алгоритм и реализовать его на языке программирования Python.

Результаты. Разработан алгоритм, реализующий базовые принципы потенциала негативности рассогласования. Определена практическая необходимость применения данного вида алгоритма, основанных на нейрофизиологических механизмах обработки сенсорной информации в мозге человека, для обнаружения аномалий в работе промышленного оборудования, вызванных внешними факторами, такими как температура, влажность, вибрации и электромагнитные помехи, что позволяет решить следующие задачи промышленной автоматизации: обнаружение аномалий; моделирование воздействия окружающей среды; оптимизация эксплуатационных процессов; прогнозирование отказов; адаптация к изменяющимся условиям. Предложена базовая архитектура автоматизированной системы, учитывающая необходимость использования программных алгоритмов потенциала негативности рассогласования, которая состоит из модулей верификации данных, обучения модели, обнаружения аномалий, прогнозной модели, визуализации и модуля интеграции с другими производственными информационными и автоматизированными системами. В работе также представлен программный код реализации базового MMN-алгоритма на языке Python.

Практическая значимость. Результаты исследования могут быть использованы для проектирования промышленных автоматизированных систем прогнозируемого или предписывающего обслуживания, в которых точность и время принятия решения играют важную роль.

Сохранить в закладках