Рассматривается алгоритм для реализации адаптивного поведения агентов в агент-ориентированных моделях (АОМ). Предполагается, что агент обладает некоторой внутренней параметрической моделью окружающего мира, которая порождает функцию правдоподобия для получаемой агентом информации об окружающем мире. Процесс адаптивного обучения агента за счет изменения параметров представлен в виде фильтрации в общей модели пространства состояний. В статье описан алгоритм SQ-фильтра, в котором используется линейная гауссовская плотность перехода и квадратичное по параметрам приближение для логарифмической функции правдоподобия. Данный алгоритм является модификацией классического фильтра Калмана. Он приложен к линейной регрессии с меняющимися параметрами. При поступлении агенту новой информации оценки параметров, в число которых входят как коэффициенты регрессии, так и дисперсия ошибки, корректируются оценки параметровадаптивным образом с учетом возможных выбросов. Работоспособность предложенной адаптивной регрессии проверена на двух экономических АОМ. Алгоритм показал хорошие результаты как в модели искусственного фондового рынка при предсказании агентами-трейдерами рыночной цены, так и в модели российской экономики при предсказании фирмами спроса на свою продукцию. С его помощью можно наделять агентов правдоподобным поведением без использования чрезмерно сложных расчетов.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.