Архив статей журнала

ПРИМЕНЕНИЕ СВЕРТОЧНЫХ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ ДЛЯ КЛАССИФИКАЦИИ ТОВАРОВ ЦЕЛЕВОЙ ГРУППЫ ПО ВЫДЕЛЕННЫМ ПРИЗНАКАМ (2025)
Выпуск: № 1 (2025)
Авторы: Поляков Филипп Алексеевич, Поляков Алексей Павлович

В работе рассматривается один из этапов определения кода товарной номенклатуры внешнеэкономической деятельности для товаров, входящих в целевую группу «обувь», состоящий в анализе изображений товарных позиций, присутствующих в сопроводительных документах. Приведено обоснование применения сверточных нейронных сетей для классификации изображений. Рассмотрены возможные подходы к построению специализированных нейросетевых классификаторов. Проведен сравнительный анализ эффективности подходов, основанных на дообучении существующих классификаторов (transfer learning) и на построении сверточных сетей, обученных только на размеченных данных выбранного товарного ассортимента. Исследованы вопросы получения обучающей выборки путем парсинга специализированных сайтов и получения элементов выборки с помощью систем искусственного интеллекта, специализирующихся на генерации изображений по запросу.

Сохранить в закладках
ПРОГНОЗИРОВАНИЕ СЛОЖНОСТИ КУРСА НА ОСНОВЕ ОЦЕНОК ПО ОБЕСПЕЧИВАЮЩИМ ДИСЦИПЛИНАМ С ПОМОЩЬЮ МЕТОДА ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ НА ПРИМЕРЕ КУРСА ПО ПРОГРАММИРОВАНИЮ НА PYTHON (2024)
Выпуск: № 2 (2024)
Авторы: Живетьев Александр Викторович, Белов Михаил Александрович

В статье рассматриваются методы прогнозирования сложности учебных курсов на основе логистической регрессии с использованием оценок по обеспечивающим дисциплинам. Основной объект исследования - курс «Программирование на Python», для которого ключевыми обеспечивающими дисциплинами выбраны математика, информатика и английский язык. Целью исследования является разработка модели, позволяющей адаптировать учебные задания к индивидуальным потребностям студентов, повышая эффективность образовательного процесса. Для реализации модели использованы синтетические данные, что обусловлено ограничениями доступа к реальным образовательным данным. Применение методов машинного обучения, в частности логистической регрессии, позволяет получить не только классификацию курсов по сложности (легкий, средний, сложный), но и вероятностные оценки, отражающие степень уверенности модели в своих предсказаниях. Авторы рассматривают весовые коэффициенты признаков, что позволяет понять вклад каждой обеспечивающей дисциплины в прогнозирование сложности. Прогнозирование сложности курсов и заданий способствует более точному подбору учебных материалов, что улучшает качество образования и способствует развитию персонализированных образовательных траекторий. Таким образом, статья вносит вклад в развитие методов образовательной аналитики и подчеркивает необходимость перехода от прогнозирования успеваемости студентов к прогнозированию сложности курсов, что открывает новые перспективы для персонализации образовательного процесса и повышения его эффективности.

Сохранить в закладках
СИСТЕМАТИЗАЦИЯ ПРИЗНАКОВ ИДЕНТИФИКАЦИИ ТОВАРОВ ДЛЯ ТАМОЖЕННЫХ ЦЕЛЕЙ ПРИ ПОСТРОЕНИИ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ КЛАССИФИКАЦИИ (2024)
Выпуск: № 2 (2024)
Авторы: Задорожный Александр Михайлович, Поляков Филипп Алексеевич

В работе проведен анализ текстов описаний товарных позиций ТН ВЭД для обуви, определены признаки, влияющие на классификацию. Предложена систематизация признаков, доступных для визуального распознавания и формализации из документации. Приведены возможности использования методов искусственного интеллекта для решения задач классификации, приведен опыт построения экспертной системы.

Сохранить в закладках