Статья: ИНТЕЛЛЕКТУАЛИЗАЦИЯ ПРОЦЕССОВ ПРИНЯТИЯ РЕШЕНИЙ В СИСТЕМАХ УПРАВЛЕНИЯ РИСКАМИ НА БАЗЕ НЕЙРОННЫХ СЕТЕЙ СЕМЕЙСТВА ART
В статье рассматривается проблематика применения нейронных сетей семейства ART для оптимизации процесса принятия решений в системах управления рисками. Преимущества такого подхода, такие как способность быстро реагировать на новую информацию и гибкость в обучении, сопоставляются с недостатками, включающими сложности настройки параметров и интерпретации результатов. В следующей части статьи будут изучены различные способы обучения ART-сетей, включая методы без учителя (unsupervised learning) и с учителем (supervised learning), а также ключевые моменты настройки параметров сети. Поднимаются возможные проблемы, связанные с качеством входных данных и сложностью интерпретации выходных данных. В статье также представлен конкретный пример использования нейронных сетей типа ART в сфере строительства для оценки рисков и принятия обоснованных решений. В заключении статьи делается акцент на перспективах использования нейронных сетей семейства ART для кластер-анализа рисков, выявления связанных факторов и группировки их для более эффективного управления. Обсуждаются возможности дальнейшего развития методов принятия решений в управлении рисками с применением нейронных сетей типа ART и их потенциал для обеспечения более точных и прогностических практик.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 10
Информация о статье
- EISSN
- 2310-6018
- Журнал
- МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
- Год публикации
- 2024