Работы автора

АНАЛИЗ ОТЗЫВОВ ПАЦИЕНТОВ С ИСПОЛЬЗОВАНИЕМ МАШИННОГО ОБУЧЕНИЯ И ЛИНГВИСТИЧЕСКИХ МЕТОДОВ (2025)

С развитием цифровизации традиционные методы анкетирования потребителей с целью оценки степени их удовлетворённости качеством услуг уступают место подходу, основанному на автоматической обработке текстовых массивов социальных медиа. Целью работы является определение степени удовлетворённости качеством медицинских услуг пациентов посредством разработки и апробации алгоритма классификации русскоязычных текстовых отзывов, извлечённых из социальных медиаресурсов. Интерес представляет определение тональности отзывов пациентов (положительный/отрицательный) о работе медицинских учреждений и врачей, а также объекты обращения отзыва - качество оказанных медицинских услуг или организация обслуживания пациентов медицинским учреждением. Разработан метод классификации текстовых отзывов о работе медицинских учреждений, размещённых пациентами на двух сайтах отзывов о врачах в России. Проанализировано около 60 тысяч отзывов. Апробированы методы машинного обучения с использованием различных архитектур искусственных нейронных сетей. Разработанный алгоритм классификации имеет высокую эффективность - лучший результат показала архитектура на основе рекуррентной нейронной сети (показатель точности = 0.9271). Применение метода поиска именованных сущностей к текстовым сообщениям позволило повысить эффективность классификации для каждого из классификаторов, базирующихся на использовании нейронных сетей. Для повышения качества классификации требуется семантическое разбиение отзыва по объекту обращения и тональности и последующий учёт полученных фрагментов отдельно друг от друга.

Издание: ОНТОЛОГИЯ ПРОЕКТИРОВАНИЯ
Выпуск: Т. 15 № 1 (2025)
Автор(ы): Калабихина Ирина Евгеньевна, Мошкин Вадим Сергеевич, Колотуша А. В., Кашин Максим Игоревич, Клименко Герман Андреевич, Казбекова Зарина Германовна
Сохранить в закладках