сследованы морфологические, структурные, оптические и фотоэлектрических свойства плёнок Mg 2 Si с толщинами 496 нм и 682 нм на кремнии Si (111). Наличие в колебательных спектрах пропускания минимума при волновом числе фотонов 270 см-1 показало, что обе плёнки содержат зерна с составом Mg 2 Si. Установлено, что для обеих плёнок Mg 2 Si характерен островковый рост Вольмера-Вебера. При меньшей толщине плёнки наблюдается неполностью срощенные ограненные зерна площадью от 0,12 до 0,48 мкм2, а при большей толщине – сплошная плёнка с некоторой плотностью провалов и состоящая из мелких коагулировавших зерен с площадью от 0,02 до 0,06 мкм2. Из данных рентгеновской дифракции установлено, что обе плёнки являются поликристаллическими с параметрами кристаллической решетки: 6,3392–6,3536 Å для плёнки с меньшей толщиной образца и 6,3440– 6,3498 Å – для плёнки с большей толщиной. Анализ ВАХ в резисторной приборной структуре на основе плёнок Mg 2 Si показал, что в диапазоне напряжений от -5 В до +5 В они являются близкими к линейным и симметричным. При этом с увеличением смещения обеих полярностей от 0 В до 1,5–2,0 В сопротивление пленок экспоненциально уменьшается, а затем уменьшается почти линейно, выходит на насыщение. Анализ фотоотклика плёнок Mg 2 Si с алюминиевыми контактными площадками в диапазоне длин волн 420–1200 нм показал, что вид спектра и амплитуда зависят от смещения на освещаемом контакте. Для обеих плёнок при отрицательном смещении спектры имеют колоколообразную форму с максимумами при 860 нм (тонкая пленка) и 750 нм (толстая пленка) и различной величиной фотоотклика, который максимален для сплошной пленки. При положительном смещении на освещаемом контакте спектр фотоотклика снижается в 3–4 раза. Такое поведение связано с неоднородностью генерации электрондырочных пар в плёнках в сплошных и несплошных (межзёренные барьеры) и разницей в их разделении электрическим полем гетероперехода Mg 2 Si/Si при двух типах смещения с последующей их экстракцией в плёнку Mg 2Si. В целом можно сделать вывод, что плёнки Mg 2 Si ведут себя как полупроводниковые фоторезисторы
Представлены результаты исследования элементного состава, морфологии поверхности, оптических и электронных свойств тонких плёнок Mg2Si, сформированных на Si (111). Оба образца, содержащие плёнки, формировались послойно методом реактивной эпитаксии, но при разной температуре прогрева подложек. Сформированные плёнки, состоящие из чередующихся слоёв Mg и Si в соотношении 3:1, по данным электронной оже-спектроскопии содержат атомы Mg и Si в соответствующих слоях. Методом комбинационного рассеяния света установлено наличие на графиках образцов пиков при сдвиге 258 и 348 см-1, принадлежащих Mg2Si. Данные инфракрасной спектроскопии также свидетельствуют о наличии силицида магния в составеплёнок. Проведена оценка толщины выращенных плёнок Mg2Si, исходя из известных данных о зависимости амплитуды пиков поглощения при 272 см-1 от коэффициента поглощения. По результатам исследования образцов в инфракрасном-ультрафиолетовом диапазоне и на основегеометрических расчётов определена ширина запрещённой зоны Mg2Si.
Методом высокотемпературного (800 оС) твердофазного (одноступенчатого и двухступенчатого) отжига на кремниевых подложках с ориентацией (111) сфор-мированы поликристаллические и ориентированные пленки дисилицида бария (BaSi2) толщиной до 100 нм. Однофазность пленок и их оптическая прозрачность ниже 1,25 эВ доказана по данным рентгеновской дифракции и оптических спектро-скопических методов. Установлено, что ориентированные пленки BaSi2 проявляют преимущественную ориентацию кристаллитов [(301), (601)] и [(211), (411)] параллельных плоскости (111) в кремнии. В ориентированных пленках обнаружены проколы, плотность которых и размеры уменьшаются при увеличении времени осты-вания после отжига при 800 оС. Расчет межплоскостных расстояний в решетке BaSi2 для выращенных пленок показал сжатие объема элементарной ячейки на 2,7 % для поликристаллической пленки, а для ориентированных пленок BaSi2 на: 4,67 % (10 минут остывания) и 5,13 % (30 минут остывания). При исследовании спектров комбинационного рассеяния света с изменяемой мощностью лазерного излучения установлено, что наибольшей устойчивостью обладают ориентированные пленки BaSi2, которые перспективны для создания солнечных элементов на кремнии. Определена максимальная плотность мощности лазерного луча (3109 Вт/м2), которая не приводит к началу разрушения данных пленок.