Архив статей журнала

ИНТЕЛЛЕКТУАЛЬНАЯ НЕЙРОСЕТЕВАЯ МАШИНА С ФУНКЦИЯМИ МЫШЛЕНИЯ (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Осипов Василий Юрьевич

В последние годы существенно вырос интерес к искусственному интеллекту на основе нейросетевых подходов. Получен ряд значимых научных результатов, которые нашли широкое применение на практике. Большое внимание привлекли генеративно - состязательные нейросетевые модели, нейросетевые трансформеры и другие решения. Достигнут очевидный прогресс в нейросетевом распознавании и генерации образов, обработке текстов и речи, прогнозировании событий, управлении трудно формализуемыми процессами. Однако пока не удалось наделить нейросетевые машины мышлением. Все получаемые с использованием нейросетевых машин результаты можно отнести к решениям на основе различных видов связывания сигналов без полноценного управления процессами их обработки. Типичными представителями таких машин выступают ChatGPT. Возможности по интеллектуальному оперированию различными сигналами в известных нейросетевых машинах очень ограничены. Среди основных причин таких ограничений следует выделить несовершенство используемых базовых принципов нейросетевой обработки информации. Свойства нейронов длительное время рассматривались упрощенно. Обуславливалось это, как пробелами в области биологических исследованиях, так и отсутствием возможностей построения больших нейронных сетей на сложных моделях нейронов. В последние годы ситуация изменилась. Появились новые способы реализации больших нейронных сетей. Также установлено, что даже отдельные нейроны могут обладать обширной внутренней памятью и реализовывать различные функции. Однако до сих пор многие механизмы функционирования нейронов и их взаимодействия остаются не раскрытыми. Мало исследованы вопросы управляемого ассоциативного обращения к внутренней памяти нейронов. Эти недостатки существенно сдерживает создание мыслящих нейросетевых машин. Объектом исследования в статье выступает процесс интеллектуальной нейросетевой обработки информации.
Предмет исследования: принципы, модели и методы такой обработки. Преследуется цель расширения функциональных возможностей нейросетевых машин по решению трудно формализуемых творческих задач за счет разработки новых принципов, моделей и методов интеллектуальной обработки информации. В интересах достижения этой цели уточняются принципы функционирования интеллектуальных нейросетевых машин, предлагаются новые модели и методы нейросетевой обработки информации. Раскрывается новая модель импульсного нейрона, как базового элемента таких машин. Искусственный мозг нейросетевых машин рекомендуется формировать в виде многослойных нейронных сетей, наделенных логическими структурами, с различными по параметрам нейронами. Предлагается новый метод многоуровневой интеллектуальной обработки информации в нейросетевых машинах на основе умных импульсных нейронов. Поясняются механизмы мышления нейросетевых машин, лежащие в их основе функции интеллектуального оперирования образами и понятиями в нейросетевой памяти. Приводятся результаты моделирования, подтверждающие справедливость предложенных решений.

Сохранить в закладках
ВОССТАНОВЛЕНИЕ АЭРОФОТОСНИМКОВ СВЕРХВЫСОКОГО РАЗРЕШЕНИЯ С УЧЕТОМ СЕМАНТИЧЕСКИХ ОСОБЕННОСТЕЙ (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Фаворская Маргарита Николаевна, Пахирка Андрей Иванович

В настоящее время происходит активное развитие технологий обработки изображений дистанционного зондирования, включающих как спутниковые снимки, так и аэрофотоснимки, полученные от видеокамер беспилотных летательных аппаратов. Зачастую такие снимки имеют артефакты, связанные с низким разрешением, размытостью фрагментов изображения, наличием шумов и т.д. Одним из способов преодоления таких ограничений является применение современных технологий для восстановления снимков сверхвысокого разрешения на основе методов глубокого обучения. Особенностью аэрофотоснимков является представление текстуры и структурных элементов более высокого разрешения, чем на спутниковых снимках, что объективно способствует лучшим результатам восстановления. В статье приводится классификация методов сверхвысокого разрешения с учетом основных архитектур глубоких нейронных сетей, а именно сверточных нейронных сетей, визуальных трансформеров и генеративно-состязательных сетей. В статье предлагается метод восстановления аэрофотоснимков сверхвысокого разрешения с учетом семантических особенностей SemESRGAN за счет использования на этапе обучения дополнительной глубокой сети для семантической сегментации. При этом минимизируется общая функция потерь, включающая состязательные потери, потери на уровне пикселов и потери воспирятия (сходства признаков). Для экспериментов использовались шесть наборов аннотированных аэрофотоснимков и спутниковых снимков CLCD, DOTA, LEVIR-CD, UAVid, AAD и AID. Было выполнено сравнение результатов восстановления изображений предложенным методом SemESRGAN с базовыми архитектурами сверточных нейронных сетей, визуальных трансформеров и генеративно-состязательных сетей. Получены сравнительные результаты восстановления изображений с применением объективных метрик PSNR и SSIM, что позволило оценить качество восстановления с использованием различных моделей глубоких сетей.

Сохранить в закладках
UNET-BOOSTED CLASSIFIER - МУЛЬТИЗАДАЧНАЯ АРХИТЕКТУРА ДЛЯ МАЛЫХ ВЫБОРОК НА ПРИМЕРЕ КЛАССИФИКАЦИИ МРТ СНИМКОВ ГОЛОВНОГО МОЗГА (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Собянин Кирилл Валентинович, Куликова Софья Петровна

Проблема обучения глубоких нейронных сетей на малых выборках особенно актуальна для медицинских задач. В работе рассматривается влияние попиксельной разметки значимых объектов на изображении, в дополнении к истинной метке класса, на качество решения задачи классификации. Для достижения лучших результатов классификации на малых выборках предлагается мультизадачная архитектура Unet-boosted classifier (UBC), обучаемая одновременно для решения задач классификации и семантической сегментации. В качестве исследуемого набора данных используются МРТ-снимки пациентов c доброкачественной глиомой и глиобластомой, взятые из открытого набора данных BraTS 2019. В качестве входа рассматривается один горизонтальный срез МРТ-изображения, содержащий глиому (всего 380 кадров в обучающей выборке), в качестве выхода - вероятность глиобластомы. В качестве базового решения используется ResNet34, обученный без аугментаций с функцией потерь на основе взаимной энтропии (CrossEntropyLoss). В качестве альтернативного решения используется UBC-ResNet34 - тот же ResNet34 усиленный декодером, построенным по принципу U-Net, и предсказывающим положение глиомы. В качестве дополнительной функции потерь используется сглаженный коэффициент Соренсена-Дайса (DiceLoss). Результаты на тестовой выборке: доля правильных ответов (accuracy) для базовой модели составила 0.71, для альтернативной - 0.81, коэффициент Дайса (Dice score) при этом составил 0.77. Таким образом, глубокую модель можно качественно обучить даже на небольшом наборе данных, используя предложенную архитектуру и добавив в разметку информацию о пораженных тканях в виде семантической маски. Предлагаемый подход потенциально может быть полезен и в любых других задачах классификации изображений с ограниченным набором данных.

Сохранить в закладках
АЛГОРИТМЫ ПЕРВИЧНОГО АНАЛИЗА ЛОКАЛЬНЫХ ОБЪЕКТОВ ФЛУОРЕСЦЕНЦИИ В СЕКВЕНАТОРЕ ДНК "НАНОФОР СПС" (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Манойлов Владимир Владимирович, Бородинов Андрей Геннадьевич, Заруцкий Игорь Вячеславович, Петров Александр Иванович, Сараев Алексей Сергеевич, Курочкин Владимир Ефимович

В секвенаторе ДНК «Нанофор СПС», разработанном в Институте аналитического приборостроения РАН, реализован метод массового параллельного секвенирования для расшифровки последовательности нуклеиновых кислот. Этот метод позволяет определять последовательность нуклеотидов в ДНК или РНК, содержащих от нескольких сотен до сотен миллионов звеньев мономеров. Таким образом, имеется возможность получения подробной информации о геноме различных биологических объектов, в том числе человека, животных и растений. Важнейшей частью этого прибора является программное обеспечение, без которого невозможно решение задач по расшифровке генома. Выходными данными оптической детекции в секвенаторе являются набор изображений по четырем каналам, соответствующим типам нуклеотидов: A, C, G, T. С помощью специального программного обеспечения определяется положение молекулярных кластеров и их интенсивностные характеристики вместе с параметрами окружающего фона. В ходе создания программного обеспечения прибора были разработаны алгоритмы и программы обработки сигналов флуоресценции, рассмотренные в работе. Также, для отладки и тестирования рабочих программ созданы модели построения изображений, аналогичных реальным данным, получаемым в ходе работы секвенатора. Данные модели позволили получить значительный массив информации без запуска дорогостоящих экспериментов. За последние годы достигнуты значительные успехи в области машинного обучения, в том числе и в области биоинформатики, что привело к реализации наиболее распространенных моделей и возможности их применения для практических задач. Однако, если на этапе вторичного анализа биоинформационных данных эти методы широко зарекомендовали себя, то их потенциал для первичного анализа остается недостаточно раскрытым. В данной работе особое внимание уделяется разработке и внедрению методов машинного обучения для первичного анализа оптических изображений сигналов флуоресценции в реакционных ячейках. Описаны методы кластеризации и их апробация на моделях и на изображениях, полученных на приборе. Цель этой статьи - продемонстрировать возможности алгоритмов первичного анализа сигналов флуоресценции, получающихся в процессе секвенирования на приборе «Нанофор СПС». В работе описаны основные задачи анализа сигналов флуоресценции и сравниваются традиционные методы их решения с использованием технологий машинного обучения.

Сохранить в закладках
ВОПРОСЫ СОЗДАНИЯ МАШИНОПОНИМАЕМЫХ SMART-СТАНДАРТОВ НА ОСНОВЕ ГРАФОВ ЗНАНИЙ (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Шалфеева Елена Арефьевна, Грибова Валерия Викторовна

Развитие цифровой трансформации требует широкого использования новых технологий в документах по стандартизации. Одной из задач является создание стандартов с машинопонимаемым содержанием, которые позволят использовать цифровые документы на различных этапах разработки и производства без необходимости участия человека-оператора. Целью данной работы является описание подхода для создания и перевода в машинопонимаемое представление нормативных документов отрасли для дальнейшего их использования в программных сервисах и системах. Содержимое SMART-стандарта бывает трех видов: машиночитаемое, машиноинтерпретируемое и машинопонимаемое. Для формализации данных и знаний при решении различных задач активно используются графы знаний. Предложен новый двухуровневый подход для создания и перевода в машинопонимаемое представление нормативных документов как графов знаний. Подход определяет два вида интерпретации такого документа (человекочитаемость и машинопонимаемость) через два связанных формата: граф, каждый семантический узел которого представляет текст на естественном языке, и сеть понятий и строгих связей. Каждому узлу «человекочитаемого» графа соответствует (в общем случае) поддерево машинопонимаемого графа знаний. В качестве основы для обеспечения преобразования одной формы представления SMART-стандарта в другую форму служат LLM модели, дополняемые специализированным адаптером, полученным в результате дообучения с помощью подхода Parameter-Efficient Fine-Tuning. Установлены требования к набору проблемно- и предметно-ориентированных инструментальных средств формирования графов знаний. Показана концептуальная архитектура системы поддержки решения комплекса задач на основе SMART-документов в виде графов, установлены принципы реализации программных компонентов, работающих со знаниями, для интеллектуальных программных сервисов.

Сохранить в закладках
КАЛМАНОВСКАЯ ФИЛЬТРАЦИЯ ОДНОГО КЛАССА ИЗОБРАЖЕНИЙ ДИНАМИЧЕСКИХ ОБЪЕКТОВ (2024)
Выпуск: Т. 23 № 4 (2024)
Авторы: Сойфер Виктор Александрович, Фрусов Кирилл Глебович, Харитонов Сергей Иванович

Рассматривается задача оценивания состояния динамического объекта по наблюдаемым изображениям, сформированным оптической системой. Цель исследования состоит в реализации нового подхода, обеспечивающего повышение точности автономного слежения за динамическим объектом по последовательности изображений. Используется векторная модель изображения объекта в виде ограниченного количества вершин (базовых точек). Предполагается, что в процессе регистрации объект удерживается в центральной области каждого кадра, поэтому параметры движения могут описываться в виде проекций на оси системы координат, связанной с оптической осью камеры. Новизна подхода состоит в том, что наблюдаемые параметры (расстояние вдоль оптической оси и угловое положение) объекта вычисляются по координатам заданных точек на изображениях объекта. Для оценки состояний объекта строится фильтр Калмана-Бьюси в предположении, что движение динамического объекта описывается совокупностью уравнений поступательного движения центра масс вдоль оптической оси и изменений углового положения относительно плоскости изображения. Приведен пример оценивания углового положения объекта, иллюстрирующий работоспособность предложенного метода.

Сохранить в закладках
БЕССТРЕССОВЫЙ АЛГОРИТМ УПРАВЛЕНИЯ БЕГОВЫМИ ПЛАТФОРМАМИ НА ОСНОВЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Обухов Артём Дмитриевич, Дедов Денис Леонидович, Волков Андрей Андреевич, Назарова Александра Олеговна, Теселкин Даниил Вячеславович

В статье рассматривается задача прогнозирования скорости человека с использованием нейросетевых технологий и компьютерного зрения для минимизации запаздывания в системах управления беговыми платформами, приводящего к риску для здоровья пользователя. Для ее решения разработан бесстрессовый алгоритм, включающий прогнозирование положения и скорости пользователя на беговой платформе, включающий процедуру расчета скорости беговой платформы на основе анализа положения и характера движения пользователя, схему сбора и обработки данных для обучения нейросетевых методов, процедуру определения необходимого количества прогнозируемых кадров для устранения запаздывания. Научная новизна исследования состоит в разработке алгоритма управления беговыми платформами, объединяющего технологии компьютерного зрения для распознавания модели тела пользователя платформы, нейронные сети и методы машинного обучения для определения итоговой скорости человека на основе объединения данных о положении человека в кадре, текущей и прогнозируемой скорости человека. Предложенный алгоритм реализован с использованием библиотек Python, проведена его апробация в ходе экспериментальных исследований при анализе предшествующих 10 и 15 кадров для прогнозирования 10 и 15 следующих кадров. В результате сравнения алгоритмов машинного обучения (линейная регрессия, дерево решений, случайный лес, многослойные, сверточные и рекуррентные нейронные сети) при различных величинах длин анализируемых и прогнозируемых кадров наилучшую точность при прогнозировании положения показал алгоритм RandomForestRegressor, а при определении текущей скорости - плотные многослойные нейронные сети. Проведены экспериментальные исследования по применению разработанного алгоритма и моделей для определения скорости человека (при прогнозе в диапазоне 10-15 кадров получена точность более 90%), а также по их интеграции в систему управления беговой платформой. Испытания показали работоспособность предложенного подхода и корректность работы системы в реальных условиях. Разработанный алгоритм позволяет не использовать чувствительные к помехам датчики, требующие закрепления на теле человека, а прогнозировать действия пользователя за счет анализа всех точек тела человека для снижения запаздывания в различных человеко-машинных системах.

Сохранить в закладках
КЛАССИФИКАЦИЯ ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ ПАТТЕРНОВ НА ОСНОВЕ НЕЙРОМОРФНЫХ СЕТЕЙ (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Гунделах Филипп Викторович, Станкевич Лев Александрович

Эта работа посвящена проблемам разработки нейроморфных классификаторов пространственно-временных паттернов, а также их применению в нейроинтерфейсах для решения задачи управления робототехническими устройствами. Рассматриваются классификаторы пространственно-временных паттернов на основе нейронных сетей, метода опорных векторов, глубоких нейронных сетей, римановой геометрии. Проводится сравнительное исследование этих классификаторов на точность многоклассового распознавания электроэнцефалографических сигналов, показывающих зависимую от времени биоэлектрическую активность в различных зонах мозга при воображении разных движений. Показано, что такие классификаторы могут обеспечить точность 60-80% при распознавании от двух до четырех классов воображаемых движений. Предложен новый тип классификатора на основе нейроморфной сети, биоподобные нейроны которой построены на модели Ижикевича. Исходный электроэнцефалографический сигнал кодируется в импульсные потоки на основе алгоритма временного кодирования. Предложенная нейроморфная сеть обрабатывает импульсные входные последовательности и формирует на выходах импульсные потоки разной частоты. Обучение сети проводится по размеченной информации, содержащей примеры правильного распознавания нужных классов паттернов воображаемых движений с применением алгоритма Supervised STDP. Распознанный класс паттерна воображаемого движения определяется по максимальной частоте импульсного потока выходной последовательности. Нейроморфный классификатор показал среднюю точность классификации 90% для 4-х классов воображаемых двигательных команд, а максимальная точность составила 95%. Путем моделирования задачи управления роботом в виртуальной среде показано, что такая точность классификации достаточна для эффективного применения классификатора в составе неинвазивного интерфейса «мозг-компьютер» при бесконтактном управлении робототехническими устройствами.

Сохранить в закладках
МЕТОДИКА КОМПРЕССИИ ДАННЫХ В НАКРИСТАЛЬНЫХ И МЕЖПРОЦЕССОРНЫХ СЕТЯХ С ШИРОКИМИ КАНАЛАМИ И ПОЛИТИКОЙ УПРАВЛЕНИЯ ПОТОКОМ WORMHOLE (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Сурченко Александр Викторович, Недбайло Юрий Александрович

Увеличение количества вычислительных ядер является одним из основных современных способов повышения производительности процессоров. При этом увеличивается и нагрузка на подсистему памяти процессора в связи с растущим числом инициаторов обращений в память. Одним из нестандартных подходов к повышению производительности подсистемы памяти является аппаратная компрессия данных, позволяющая, во-первых, повысить эффективный объем кэш-памяти, снижая частоту запросов в оперативную память, а во-вторых, снизить интенсивность трафика в подсистеме памяти за счет более плотной упаковки данных. В работе рассматривается применение аппаратной компрессии данных в сети-на-кристалле и межпроцессорных каналах связи в конфигурации с широкими каналами передачи данных и политикой управления потоком wormhole. Существующие решения для такой конфигурации нельзя считать применимыми, т.к. они принципиально основаны на использовании узких каналов передачи данных и политиках управления потоком, предполагающих передачу пакета в неразрывном виде, что может не соблюдаться при применении политики wormhole. Предлагаемая в работе методика позволяет использовать аппаратную компрессию для рассматриваемой конфигурации за счет переноса процесса компрессии и декомпрессии из самой сети в соединяемые устройства, а также ряда оптимизаций по сокрытию задержек на преобразование данных. Рассматриваются оптимизации некоторых частных случаев передачи данных - передачи больших пакетов данных, состоящих из нескольких кэш-строк, а также нулевых данных. Особое внимание в работе уделено передаче данных по межпроцессорным каналам связи, в которых, в связи с их меньшей пропускной способностью по сравнению с сетью-на-кристалле, применение компрессии способно оказать наибольший эффект. Повышение пропускной способности подсистемы памяти при использовании в ней аппаратной компрессии данных подтверждается экспериментальными результатами, показывающими относительное увеличение IPC в задачах пакета SPEC CPU2017 до 14 процентов.

Сохранить в закладках
МОДЕЛИ СОСТАВНЫХ ГАРМОНИЧЕСКИХ ПОЛУВОЛН И СВЯЗЬ ДИСКРЕТИЗАЦИИ ВРЕМЕНИ С ЭНТРОПИЕЙ ВРЕМЕННЫХ ПАРАМЕТРОВ СИГНАЛОВ (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Майоров Борис Геннадьевич

Целью данного исследования является определение связи энтропии временных параметров сигналов в робастной системе управления с величиной дискретизации системного времени (в развитие работ trspy 1185, trspy 1274). В качестве примера объекта исследования рассмотрен процесс и его сигналы экстренного торможения высокоскоростного состава при наличии скольжения колёс по рельсам. Решена задача нахождения абсолютной погрешности ступенчатой и линейной интерполяции сигнала управления по равномерным выборкам из него с применением моделей составных гармонических полуволн. Предварительно, при обследовании объекта управления, определяются максимальные величины параметров сигнала и полуволн: скорость, ускорение и резкость. Параметры спектра отсутствуют по причине большой инерционности объектов управления, процессов и сигналов. Для определения величин интервалов равномерной дискретизации времени рассмотрены две группы моделей «гармонических полуволн». Первая группа моделей описывается гармоническими функциями времени, параметры которых согласованы. Вторая группа моделей описывается составными гармоническими функциями времени, тем самым согласуются временные параметры сигналов. Доказано, что при увеличении энтропии максимальных величин параметров сигналов увеличивается величина интервала дискретизации времени без увеличения погрешности интерполяции. Таким образом, величина энтропии параметров сигналов служит индикатором их рассогласованности. Приведены результаты моделирования и графики, полученные в среде математического пакета MathCAD. Результаты предназначены для оптимизации загрузки задачами ввода и первичной обработки информации процессоров в робастных системах автоматики реального времени, например, используемых для управления высокоскоростными поездами при штатном экстренном торможении и экстренном торможении в условиях скольжения или юза.

Сохранить в закладках
ОСНОВАННЫЙ НА ГЕНЕТИЧЕСКОМ ПОДХОДЕ АЛГОРИТМ ВНУТРИКОДИРОВАНИЯ ДЛЯ H.266/VVC (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Мурудж Ибрагим Халид, Хатиф Наджи Аль-Аззави, Абдаламир Аль-Хафаджи Исраа

Представлен генетический подход для оптимизации внутреннего кодирования в H.266/VVC. Предлагаемый алгоритм эффективно выбирает инструменты кодирования и многотипные древовидные разбиения (MTT) для достижения баланса между временем кодирования и качеством видео. Функция оценки пригодности, которая объединяет показатели восприятия и эффективности кодирования, используется для оценки качества каждого возможного решения. Результаты демонстрируют значительное сокращение времени кодирования без ущерба для качества видео. Предлагаемый алгоритм выбирает инструменты кодирования из набора доступных инструментов в H.266/VVC. Эти инструменты включают режимы внутреннего прогнозирования, единицы преобразования, параметры квантования и режимы энтропийного кодирования. Схема разбиения MTT включает четыре типа разбиений: квадродерево, двоичное дерево, троичное дерево и квадро-двоичное дерево. Показатели восприятия используются для оценки визуального качества закодированного видео. Показатели эффективности кодирования используются для оценки эффективности кодирования закодированного видео. Функция оценки пригодности объединяет показатели восприятия и показатели эффективности кодирования для оценки качества каждого возможного решения.

Сохранить в закладках
ВОССТАНОВЛЕНИЕ ДИСКРЕТНОЙ ПОСЛЕДОВАТЕЛЬНОСТИ СИГНАЛА НА ОСНОВЕ МОДЕЛИ СКОЛЬЗЯЩЕГО СРЕДНЕГО И ОЦЕНКИ КОРРЕЛЯЦИОННОЙ СВЯЗИ ОТСЧЕТОВ ПРИ ПРЯМОМ И ОБРАТНОМ ПРОГНОЗИРОВАНИИ (2024)
Выпуск: Т. 23 № 3 (2024)
Авторы: Якимов Владимир Николаевич

В статье рассмотрена разработка математического обеспечения для восстановления значений отсчетов дискретной последовательности, которая была получена в результате равномерной дискретизации непрерывного во времени сигнала. Задача восстановления решается исходя из того, что сигнал можно рассматривать как стационарный или стационарный хотя бы в широком смысле (квазистационарный). Разработка математического обеспечения для восстановления значений отсчетов сигнала осуществлена на основе построения модели скользящего среднего и оценки корреляционной связи отсчетов сигнала во времени при прямом и обратном прогнозировании. Необходимая для восстановления значений отсчетов выборка оценок корреляционной функции сигнала вычисляется по отсчетам с известными значениями. С учетом выполнения условия стационарности сигнала это можно сделать на любом участке последовательности независимо от места нахождения восстанавливаемого участка. Полученные оценки отсчетов корреляционной функции могут использоваться как для прямого, так и для обратного прогнозирования. При этом даже если необходимо восстановить несколько проблемных участков, достаточно только один раз вычислить необходимую для их восстановления выборку оценок корреляционной функции. На основе полученного математического решения поставленной задачи разработано алгоритмическое обеспечение. Тестовые испытания и функциональные проверки алгоритмического обеспечения были осуществлены на основе имитационного моделирования с использованием модели сигнала, представляющей собой аддитивную сумму гармонических компонент со случайными начальными фазами. Полученные результаты показали, что вычисление оценок значений утраченных отсчетов осуществляется с достаточно низкой погрешностью, как при прямом, так и при обратном прогнозировании, а также при их совместном использовании. На практике выбор алгоритма восстановления последовательности на основе прямого или обратного прогнозирования будет определяться исходя из реальных условий. В частности, если предыдущих отсчетов с известными значениями недостаточно для прямого прогнозирования, то осуществляется процедура обратного прогнозирования и наоборот. Разработанное алгоритмическое обеспечение может быть реализовано в виде метрологически значимого программного обеспечения для многофункциональных систем цифровой обработки сигналов.

Сохранить в закладках