ВЕСТНИК ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА МОРСКОГО И РЕЧНОГО ФЛОТА ИМ. АДМИРАЛА С. О. МАКАРОВА

Архив статей журнала

ОПТИМИЗАЦИЯ ПРОЦЕССА ТЕСТИРОВАНИЯ НА ПРОНИКНОВЕНИЕ В АСУ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ (2024)
Выпуск: Т. 16 № 3 (2024)
Авторы: НЫРКОВ АНАТОЛИЙ ПАВЛОВИЧ, ЮМАШЕВА ЕЛЕНА СЕРГЕЕВНА, КИРИКОВ АНТОН ВИКТОРОВИЧ

Темой работы является исследование процесса широкого внедрения автоматизированных информационно-управляющих систем в промышленности, энергетике и на транспорте. Отмечается, что повышение их сложности неизбежно приводит к возникновению различного рода уязвимостей в этих системах, наличие которых позволяет злоумышленникам проникать в автоматизированные управляющие системы, брать их под свой контроль, а также нарушать нормальный режим работы управляемых ими технологических процессов. Подчеркивается, что в течение последнего десятилетия успешные кибератаки были зафиксированы в энергетике, в том числе атомной, в морском судоходстве, в портовых перегрузочных комплексах, а также в других системах. Превентивный подход к обеспечению безопасности автоматизированных управляющих систем заключается в выявлении и использовании существующих уязвимостей путем имитации возможных кибератак. Отмечается, что автоматизация такого достаточно трудоемкого процесса, как «тестирование на проникновение», позволяет сократить время, финансовые затраты и другие ресурсы. Исследованы основные методы выявления уязвимостей, в том числе с применением искусственного интеллекта. В представленном подходе к оптимизации процесса тестирования на проникновение в автоматизированные системы управления технологическими процессами использованы алгоритмы машинного обучения. Предпочтение отдано машинному обучению с подкреплением, основу которого составляет алгоритм Deep Q-learning. Предлагается интеграция методов сканирования сети, построения графа атак и обучения нейронных сетей для эффективного выявления уязвимостей и рисков в сетевых инфраструктурах. Для построения графа атак используются базы знаний MITRE ATT&CK с применением GBVA Framework, для выбора оптимальных действий в процессе тестирования - алгоритм Deep Q-learning.

Сохранить в закладках
ОПРЕДЕЛЕНИЕ МЕСТОПОЛОЖЕНИЯ СУДНА ПО ГЛУБИНАМ ПРИ ПОМОЩИ НЕЙРОННОЙ СЕТИ (2024)
Выпуск: Т. 16 № 1 (2024)
Авторы: ДЕРЯБИН ВИКТОР ВЛАДИМИРОВИЧ

Предложен метод определения места судна по глубинам на основе нейронной сети, которая принимает на вход последовательность глубин, измеренных при помощи эхолота, а прогнозирует широту и долготу судна на момент измерения последней глубины. Нейронная сеть имеет архитектуру сети прямого распространения с несколькими скрытыми слоями и полными связями, удовлетворяющую условиям универсальной аппроксимации в соответствии с теоремой Стоуна - Вейерштрасса. Для обучения используется алгоритм Adamax при условии контроля наибольшего значения модуля невязки на каждой итерации. Моделирование выполнялось с использованием языка программирования Python и библиотеки Tensorflow. Модельная поверхность рельефа дна была представлена в виде многочлена второго порядка. Образцы получены на основе виртуальных измерений глубин в узлах координатной сетки с пространственным разрешением не хуже, чем один кабельтов. После сбора образцов выполнялось обучение нейронной сети, в ходе которого не использовалась контрольная выборка. В обучении участвовало несколько нейронных сетей, отличающихся количеством скрытых слоев, а также количеством нейронов в них. После обучения было проведено тестирование, которое предполагало движение судна вдоль меридианов, в точности не совпадающих с используемыми для формирования обучающей выборки. При этом наряду с вариантом средних по долготе меридианов рассмотрен вариант выбора меридианов с использованием датчика случайных чисел равномерного распределения. В результате тестирования все рассмотренные сети показали примерно одинаковую приемлемую навигационную точность, близкую к точности, полученной на обучающей выборке.

Сохранить в закладках
ОПРЕДЕЛЕНИЕ ШИРОТЫ МЕСТА СУДНА ПО ГЛУБИНАМ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ (2025)
Выпуск: Т. 17 № 1 (2025)
Авторы: ДЕРЯБИН ВИКТОР ВЛАДИМИРОВИЧ, САЗОНОВ АНАТОЛИЙ ЕФИМОВИЧ

Предложен метод определения широты места судна по глубине на основе нейронной сети, которая принимает на вход последовательность глубин, измеренных при помощи однолучевого эхолота и прогнозирует широту на момент измерения последней глубины. Сеть имеет два слоя. Первый слой содержит нейроны с функциями активации в виде гиперболического тангенса, второй состоит из одного нейрона, обладающего тождественной функцией активации. Набор учебных данных состоит из обучающей и контрольной выборок. Обучающая выборка формируется на основе слоя глубин, содержащегося в электронной навигационной карте. Контрольная выборка формируется путем псевдослучайных вариаций входных образцов из обучающей выборки. Каждая такая вариация соответствует постоянному изменению уровня моря вследствие ошибок измерений и/или колебаний ветрового и/или приливоотливного характера. Обучается сеть методом Adamax. Критерием эффективности обучения служит наибольшее значение модуля ошибки прогноза широты, определенное для образцов из контрольной выборки. После обучения сеть проходит тестирование на образцах, полученных аналогичным образом, как для контрольной выборки. Моделирование выполнено с использованием языка программирования Python. Для обучения и реализации работы нейронной сети используется библиотека TensorFlow. Моделирование выполнено для нескольких вариантов архитектуры сети, каждый из которых отличается количеством нейронов в скрытом слое. В результате было зафиксировано, что нейронные сети имеют тенденцию к обучению их прогнозированию широты места судна по последовательности глубин, что позволяет рассматривать их в качестве перспективного инструмента для решения задач батиметрической навигации.

Сохранить в закладках