Работа посвящена проблеме повышения эффективности масочного автоэнкодера за счет разработки стратегии маскирования изображений, которая учитывала бы расположение объектов на изображении и позволяла бы скрыть как можно меньше семантически важной информации. В статье представлен обзор существующих методов маскирования изображений, включая стратегии как с учетом, так и без учета структуры изображения. Предложена стратегия наложения масок на основе алгоритма поиска объектов, анализирующего элементарные характеристики фрагментов изображений. Исследование проводится на примере масочного автоэнкодера с ViT в качестве энкодера. Сравнивается эффективность обучения энкодера с использованием предложенной стратегии и с использованием стратегии случайного маскирования изображений.
Сайт https://scinetwork.ru (далее – сайт) работает по принципу агрегатора – собирает и структурирует информацию из публичных источников в сети Интернет, то есть передает полнотекстовую информацию о товарных знаках в том виде, в котором она содержится в открытом доступе.
Сайт и администрация сайта не используют отображаемые на сайте товарные знаки в коммерческих и рекламных целях, не декларируют своего участия в процессе их государственной регистрации, не заявляют о своих исключительных правах на товарные знаки, а также не гарантируют точность, полноту и достоверность информации.
Все права на товарные знаки принадлежат их законным владельцам!
Сайт носит исключительно информационный характер, и предоставляемые им сведения являются открытыми публичными данными.
Администрация сайта не несет ответственность за какие бы то ни было убытки, возникающие в результате доступа и использования сайта.
Спасибо, понятно.