Статья: ОБЗОР ПРИМЕНЕНИЯ ГЛУБОКИХ НЕЙРОННЫХ СЕТЕЙ И ПАРАЛЛЕЛЬНЫХ АРХИТЕКТУР В ЗАДАЧАХ ФРАГМЕНТАЦИИ ГОРНЫХ ПОРОД
Оценка производительности добычи полезных ресурсов, в том числе определение геометрических размеров объектов горной породы в открытом карьере, является одной из наиболее важных задач в горнодобывающей промышленности. Задача фрагментации горных пород решается с помощью методов компьютерного зрения, таких как экземплярная сегментация или семантическая сегментация. В настоящее время для решения таких задач для цифровых изображений используются нейронные сети глубокого обучения. Нейронные сети требуют больших вычислительных мощностей для обработки цифровых изображений высокого разрешения и больших наборов данных. Для решения этой проблемы в литературе предлагается использование облегченных архитектур нейронных сетей, а также методов оптимизации производительности, таких как параллельные вычисления с помощью центральных, графических и специализированных процессоров. В обзоре рассматриваются последние достижения в области нейронных сетей глубокого обучения для решения задач компьютерного зрения применительно к фрагментации горных пород и вопросы повышения производительности реализаций нейронных сетей на различных параллельных архитектурах.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 1
Информация о статье
- ISSN
- 2305-9052
- EISSN
- 2410-7034
- Журнал
- ВЕСТНИК ЮЖНО-УРАЛЬСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА. СЕРИЯ: ВЫЧИСЛИТЕЛЬНАЯ МАТЕМАТИКА И ИНФОРМАТИКА
- Год публикации
- 2023