Статья: СРАВНИТЕЛЬНЫЙ АНАЛИЗ РЕКУРРЕНТНЫХ НЕЙРОННЫХ СЕТЕЙ И МОДЕЛИ АВТОРЕГРЕССИИ ARIMA ПРИ ПРОГНОЗИРОВАНИИ НЕСТАЦИОНАРНЫХ ВРЕМЕННЫХ РЯДОВ

Для прогнозирования выхода светлых фракций установкой ЭЛОУ-АВТ-6 проведен сравнительный анализ модели рекуррентной нейронной сети и модели авторегрессии ARIMA. Приведено математическое описание этих моделей. Приведена реализация моделей с использованием библиотек Keras и Pmdarima на языке Python. Проведена серия экспериментов, в качестве данных использовались значения температуры куба колонны К-2, расход сырой нефти и расход фракции бензина. Сделан вывод, о превосходстве качества прогноза нейронных сетей над ARIMA

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Загрузил(а)
Лицензия
Доступ
Всем
Просмотров
4

Информация о статье

ISSN
2311-4908
Журнал
ПРИКЛАДНАЯ МАТЕМАТИКА И ФУНДАМЕНТАЛЬНАЯ ИНФОРМАТИКА
Год публикации
2022
Автор(ы)
Дюссекенов Д., Тюменцев Е. А.