Статья: ПОВЕДЕНИЕ ТРАЕКТОРИЙ МОДЕЛИ РАЗВИТИЯ КЛЕТОЧНОЙ ПОПУЛЯЦИОННОЙ СИСТЕМЫ
Исследуется математическая модель развития «in vitro» клеточной популяционной системы, включающая два типа клеток: здоровых и больных, например раковых. Модель позволяет описывать различные сценарии поведения клеток, в том числе процесс перерождения здоровых клеток в больные. Модель представлена системой ОДУ второго порядка. Биологический смысл системы накладывает определенные ограничения на фазовые переменные системы и ее параметры. Так, фазовые переменные, отражающие популяции клеток, должны быть неотрицательными, так что в качестве фазового пространства системы следует рассматривать неотрицательный квадрант. Параметры системы также имеют ограничения, вытекающие из их биологического смысла. Анализ этих ограничений приведен в статье. В работе проведен полный анализ положений равновесия. В частности, указаны условия на параметры, когда система имеет одно, два, три или четыре положения равновесия в неотрицательном квадранте. Описано условие перехода положения равновесия из состояния, находящегося внутри положительной области, на координатную ось. Рассмотрены условия устойчивости положений равновесия в некоторых случаях. Построены фазовые портреты системы при различных параметрах, иллюстрирующие случаи разного количества положений равновесия. Для системы с помощью метода локализации инвариантных компактов найдены границы для ограниченных траекторий, определены условия, когда в полученном локализирующем множестве не существует цикл.
Информация о документе
- Формат документа
- Кол-во страниц
- 1 страница
- Загрузил(а)
- Лицензия
- —
- Доступ
- Всем
- Просмотров
- 4
Предпросмотр документа
Информация о статье
- ISSN
- 1819-2440
- EISSN
- 1819-2467
- Журнал
- УПРАВЛЕНИЕ БОЛЬШИМИ СИСТЕМАМИ: СБОРНИК ТРУДОВ
- Год публикации
- 2025