Статья: Перспективы применения компьютерного зрения для выявления камней в мочевыделительной системе и новообразований печени и почек на изображениях компьютерной томографии органов брюшной полости и забрюшинного пространства

В работе представлен селективный обзор литературы, посвящённый использованию алгоритмов компьютерного зрения для диагностики новообразований печени и почек, а также камней в мочевыделительной системе на изображениях компьютерной томографии органов брюшной полости и забрюшинного пространства.
В обзор были включены статьи, опубликованные за период с 01.01.2020 по 24.04.2023 гг.
В задаче сегментации печени и её новообразований алгоритмы, оперирующие пикселями, показали наибольшие значения параметров диагностической точности (точность достигает 99,6%; коэффициент сходства Дайса — 0,99). Задачи классификации новообразований печени на текущий момент лучше решаются воксельными алгоритмами (точность до 82,5%).
Сегментация почек и их новообразований, а также классификация опухолей почек одинаково хорошо выполняются алгоритмами, анализирующими как пиксели, так и воксели (точность достигает 99,3%, коэффициент сходства Дайса — 0,97).
Алгоритмы компьютерного зрения в настоящее время также способны с высокой степенью точности определять конкременты в мочевыделительной системе размерами от 3 мм (точность достигает 93,0%).
Таким образом, существующие алгоритмы компьютерного зрения позволяют не только эффективно выявлять новообразования печени и почек, а также конкременты в мочевыделительной системе, но и с высокой точностью определять их количественные и качественные характеристики.
Более высокая точность определения вида новообразования может быть достигнута за счёт оценки воксельных данных, поскольку в этом случае алгоритм анализирует новообразование полностью в трёх измерениях, а не только в плоскости одного среза.

Информация о документе

Формат документа
PDF
Кол-во страниц
1 страница
Лицензия
Доступ
Всем
Просмотров
6

Информация о статье

ISSN
2712-8490
EISSN
2712-8962
Журнал
DIGITAL DIAGNOSTICS
Год публикации
2024
Автор(ы)
Нечаев Н. Б., Васильев Ю. А., Владзимирский А. В., Арзамасов К. М., Шихмурадов Д. У., Панкратов А. В., Ульянов И. В.