Мигрень представляет собой форму первичной головной боли, от которой страдает не менее 10% населения планеты. Кроме рекомендаций по модификации образа жизни пациента, менеджмент мигрени подразумевает купирование уже возникшего приступа и/или профилактику его возникновения. В абортивном лечении этой цефалгии могут использоваться фармакологические агенты как неспецифического (например, ненаркотические анальгетики), так и специфического действия. К числу последних относят, в частности, серотонинергические средства классов триптанов (селективных агонистов 5-НТ1B/1D-рецепторов), дитанов (избирательных 5-НТ1F-миметиков) и алкалоидов спорыньи (неселективных модуляторов различных подтипов 5-НТ-рецепторов). В обзоре представлены известные к настоящему времени результаты множества фундаментально-прикладных исследований препаратов указанных групп, в ходе которых были выявлены нейрональные и сосудистые составляющие их антимигренозной фармакодинамики. Значительная часть этих данных получена invivo на различных экспериментальных моделях мигрени, основанных на тригемино-васкулярной теории ее патогенеза. Другие сведения являются итогами работы ехvivo на изолированных тканях и клеточных культурах. При анализе результатов этих исследований приводятся доказательства в пользу схожих механизмов реализации антимигренозного потенциала представителей всех перечисленных фармакологических классов, у которых нейротропная активность преобладает над прямым вмешательством в сосудистый тонус. Специальное внимание уделено неоднозначным и дискуссионным вопросам в этой области, успешное решение которых является залогом дальнейшего прогресса в фармакотерапии мигрени.
Идентификаторы и классификаторы
- SCI
- Биология
Из всех болевых синдромов первое место по распространенности занимает головная боль (ГБ), под которой понимается любое неприятное ощущение выше орбитомеатальной линии и/или затылочного гребня.
Список литературы
1. Азимова Ю.Э., Амелин А.В., Алферова В.В. и др. Клинические рекомендации “Мигрень” // Журн. неврологии и психиатрии им. С.С. Корсакова. 2022. Т. 122. № 1–3. С. 4–36. DOI: 10.17116/jnevro20221220134
2. Амелин А.В., Соколов А.Ю., Ваганова Ю.С. Мигрень. От патогенеза до лечения. М.: МЕДпресс-информ, 2023. 516 с.
3. Долгорукова А.Н., Соколов А.Ю. Электрофизиологическая модель тригеминоваскулярной ноцицепции как инструмент экспериментального изучения фармакотерапии мигрени // Российский журн. боли. 2021. Т. 19. № 3. С. 31–38. DOI: 10.17116/pain20211903131 EDN: YYJIXX
4. Соколов А.Ю., Любашина О.А., Ваганова Ю.С., Амелин А.В. Периферическая нейростимуляция в терапии головных болей // Журнал неврологии и психиатрии им. С.С. Корсакова. 2019. Т. 119. № 10. С. 79–88. DOI: 10.17116/jnevro201911910179 EDN: BEUUCT
5. Akerman S., Karsan N., Bose P. et al. Nitroglycerine triggers triptan-responsive cranial allodynia and trigeminal neuronal hypersensitivity // Brain. 2019. V. 142. N 1. P. 103–119. DOI: 10.1093/brain/awy313
6. Akerman S., Williamson D.J., Kaube H., Goadsby P.J. The effect of anti-migraine compounds on nitric oxide-induced dilation of dural meningeal vessels // Eur. J. Pharmacol. 2002. V. 452. № 2. P. 223–228. DOI: 10.1016/s0014-2999(02)02307-5 EDN: BBHPSH
7. Ala M., Ghasemi M., Mohammad Jafari R., Dehpour A.R. Beyond its anti-migraine properties, sumatriptan is an anti-inflammatory agent: A systematic review // Drug Dev. Res. 2021. V. 82. № 7. P. 896–906. DOI: 10.1002/ddr.21819
8. Amini N., Modir H., Omidvar S. et al. The Effect of Sumatriptan, Theophylline, Pregabalin and Caffeine on Prevention of Headache Caused By Spinal Anaesthesia (PDPH): A Systematic Review // J. West. Afr. Coll. Surg. 2022. V. 12. № 4. P. 102–116. DOI: 10.4103/jwas.jwas_183_22 EDN: GFPZLY
9. Amrutkar D.V., Ploug K.B., Hay-Schmidt A. et al. mRNA expression of 5-hydroxytryptamine 1B, 1D, and 1F receptors and their role in controlling the release of calcitonin gene-related peptide in the rat trigeminovascular system // Pain. 2012. V. 153. № 4. P. 830–838. DOI: 10.1016/j.pain.2012.01.005
10. Andersen A.R., Tfelt-Hansen P., Lassen N.A. The effect of ergotamine and dihydroergotamine on cerebral blood flow in man // Stroke. 1987. V. 18. № 1. P. 120–123. DOI: 10.1161/01.str.18.1.120
11. Ashina M., Hansen J.M., Do T.P. et al. Migraine and the trigeminovascular system-40 years and counting // Lancet Neurol. 2019. V. 18. № 8. P. 795–804. DOI: 10.1016/S1474-4422(19)30185-1
12. Balcziak L.K., Russo A.F. Dural Immune Cells, CGRP, and Migraine // Front. Neurol. 2022. V. 13. Art. № 874193. DOI: 10.3389/fneur.2022.874193 EDN: WMIPXC
13. Barbanti P., Aurilia C., Egeo G. et al. Serotonin receptor targeted therapy for migraine treatment: an overview of drugs in phase I and II clinical development // Expert Opin. Investig. Drugs. 2017. V. 26. P. 3. P. 269-277. DOI: 10.1080/13543784.2017.1283404
14. Bardoni R. Serotonergic Modulation of Nociceptive Circuits in Spinal Cord Dorsal Horn // Curr. Neuropharmacol. 2019. V. 17. № 12. P. 1133–1145. DOI: 10.2174/1570159X17666191001123900 EDN: AKTFDB
15. Barnes N.M., Ahern G.P., Becamel C. et al. International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function // Pharmacol. Rev. 2021. V. 73. № 1. P. 310–520. DOI: 10.1124/pr.118.015552 EDN: RRGSDA
16. Bartsch T., Knight Y.E., Goadsby P.J. Activation of 5-HT(1B/1D) receptor in the periaqueductal gray inhibits nociception // Ann. Neurol. 2004. V. 56. № 3. P. 371–381. DOI: 10.1002/ana.20193
17. Begasse de Dhaem O., Takizawa T., Dodick D.W. Long-term open-label and real-world studies of lasmiditan, ubrogepant, and rimegepant for the acute treatment of migraine attacks // Cephalalgia. 2023. V. 43. № 2. Art. № 3331024221137092. DOI: 10.1177/03331024221137092
18. Benemei S., Cortese F., Labastida-Ramírez A. et al. School of Advanced Studies of the European Headache Federation (EHF-SAS). Triptans and CGRP blockade – impact on the cranial vasculature // J. Headache Pain. 2017. V. 18. № 1. Art. № 103. DOI: 10.1186/s10194-017-0811-5 EDN: EFAALK
19. Bergerot A., Storer R.J., Goadsby P.J. Dopamine inhibits trigeminovascular transmission in the rat // Ann. Neurol. 2007. V. 61. № 3. P. 251–262. DOI: 10.1002/ana.21077
20. Bhatt D.K., Gupta S., Jansen-Olesen I. et al. NXN-188, a selective nNOS inhibitor and a 5-HT1B/1D receptor agonist, inhibits CGRP release in preclinical migraine models // Cephalalgia. 2013. V. 33. № 2. P. 87–100. DOI: 10.1177/0333102412466967
21. Bhattacharya A., Schenck K.W., Xu Y.C. et al. 5-Hydroxytryptamine1B receptor-mediated contraction of rabbit saphenous vein and basilar artery: role of vascular endothelium // J. Pharmacol. Exp. Ther. 2004. V. 309. № 2. P. 825–832. DOI: 10.1124/jpet.103.062653
22. Bigal M.E., Krymchantowski A.V., Hargreaves R. The triptans // Expert Rev. Neurother. 2009. V. 9. № 5. P. 649–659. DOI: 10.1586/ern.09.15
23. Bigal M.E., Tepper S.J. Ergotamine and dihydroergotamine: a review // Curr. Pain Headache Rep. 2003. V. 7. № 1. P. 55–62. DOI: 10.1007/s11916-003-0011-7 EDN: DBCPCZ
24. Biscetti L., De Vanna G., Cresta E. et al. Immunological findings in patients with migraine and other primary headaches: a narrative review // Clin. Exp. Immunol. 2022. V. 207. № 1. P. 11–26. DOI: 10.1093/cei/uxab025 EDN: JTFMRS
25. Boers P.M., Donaldson C., Zagami A.S., Lambert G.A. Naratriptan has a selective inhibitory effect on trigeminovascular neurones at central 5-HT1A and 5-HT(1B/1D) receptors in the cat: implications for migraine therapy // Cephalalgia. 2004. V. 24. № 2. P. 99–109. x. DOI: 10.1111/j.1468-2982.2004.00636 EDN: EUVIMH
26. Bohra S.K., Achar R.R., Chidambaram S.B. et al. Current perspectives on mitochondrial dysfunction in migraine // Eur. J. Neurosci. 2022. V. 56. № 1. P. 3738–3754. DOI: 10.1111/ejn.15676 EDN: BYXDOA
27. Bonnet C., Hao J., Osorio N. et al. Maladaptive activation of Nav1.9 channels by nitric oxide causes triptan-induced medication overuse headache // Nat. Commun. 2019. V. 10. № 1. Art. № 4253. Erratum in: Nat. Commun. 2021. V. 12. № 1. Art. № 6952. DOI: 10.1038/s41467-019-12197-3 EDN: GSQEBX
28. Botros J.M., Sayed A.M. Comparison between the Effects of Sumatriptan Versus Naratriptan in the Treatment of Postdural Puncture Headache in Obstetric Patients: A Randomized Controlled Trial // Anesth. Essays Res. 2019. V. 13. № 2. P. 376–382. DOI: 10.4103/aer.AER_17_19
29. Bouchelet I., Case B., Olivier A., Hamel E. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery // Br. J. Pharmacol. 2000. V. 129. № 3. P. 501–508. DOI: 10.1038/sj.bjp.0703081
30. Burstein R., Collins B., Jakubowski M. Defeating migraine pain with triptans: a race against the development of cutaneous allodynia // Ann. Neurol. 2004. V. 55. № 1. P. 19–26. DOI: 10.1002/ana.10786
31. Burstein R., Jakubowski M. Analgesic triptan action in an animal model of intracranial pain: a race against the development of central sensitization // Ann. Neurol. 2004. V. 55. № 1. P. 27–36. DOI: 10.1002/ana.10785
32. Burstein R., Jakubowski M. Unitary hypothesis for multiple triggers of the pain and strain of migraine // J. Comp. Neurol. 2005. V. 493. № 1. P. 9–14. DOI: 10.1002/cne.20688
33. Burstein R., Jakubowski M., Levy D. Anti-migraine action of triptans is preceded by transient aggravation of headache caused by activation of meningeal nociceptors // Pain. 2005. V. 115. № 1–2. P. 21–28. DOI: 10.1016/j.pain.2005.01.027
34. Buzzi M.G., Carter W.B., Shimizu T. et al. Dihydroergotamine and sumatriptan attenuate levels of CGRP in plasma in rat superior sagittal sinus during electrical stimulation of the trigeminal ganglion // Neuropharmacology. 1991. V. 30. № 11. P. 1193–1200. DOI: 10.1016/0028-3908(91)90165-8
35. Buzzi M.G., Dimitriadou V., Theoharides T.C., Moskowitz M.A. 5-Hydroxytryptamine receptor agonists for the abortive treatment of vascular headaches block mast cell, endothelial and platelet activation within the rat dura mater after trigeminal stimulation // Brain Res. 1992. V. 583. № 1–2. P. 137–149. DOI: 10.1016/s0006-8993(10)80017-4
36. Buzzi M.G., Moskowitz M.A. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater // Br. J. Pharmacol. 1990. V. 99. № 1. P. 202–206. x. DOI: 10.1111/j.1476-5381.1990.tb14679
37. Buzzi M.G., Moskowitz M.A. Evidence for 5-HT1B/1D receptors mediating the antimigraine effect of sumatriptan and dihydroergotamine // Cephalalgia. 1991. V. 11. № 4. P. 165–168. x. DOI: 10.1046/j.1468-2982.1991.1104165
38. Buzzi M.G., Moskowitz M.A., Peroutka S.J., Byun B. Further characterization of the putative 5-HT receptor which mediates blockade of neurogenic plasma extravasation in rat dura mater // Br. J. Pharmacol. 1991. V. 103. № 2. P. 1421–1428. x. DOI: 10.1111/j.1476-5381.1991.tb09805
39. Caekebeke J.F., Ferrari M.D., Zwetsloot C.P. et al. Antimigraine drug sumatriptan increases blood flow velocity in large cerebral arteries during migraine attacks // Neurology. 1992. V. 42. № 8. P. 1522–1526. DOI: 10.1212/wnl.42.8.1522
40. Carmichael N.M., Charlton M.P., Dostrovsky J.O. Activation of the 5-HT1B/D receptor reduces hindlimb neurogenic inflammation caused by sensory nerve stimulation and capsaicin // Pain. 2008. V. 134. № 1–2. P. 97–105. DOI: 10.1016/j.pain.2007.03.037
41. Carneiro-Nascimento S., Levy D. Cortical spreading depression and meningeal nociception // Neurobiol. Pain. 2022. V. 11. Art. № 100091. DOI: 10.1016/j.ynpai.2022.100091 EDN: NLPQMF
42. Centurión D., Ortiz M.I., Sánchez-López A. et al. Evidence for 5-HT(1B/1D) and 5-HT(2A) receptors mediating constriction of the canine internal carotid circulation // Br. J. Pharmacol. 2001. V. 132. № 5. P. 983–990. DOI: 10.1038/sj.bjp.0703914
43. Centurión D., Sánchez-López A., De Vries P. et al. The GR127935-sensitive 5-HT(1) receptors mediating canine internal carotid vasoconstriction: resemblance to the 5-HT(1B), but not to the 5-HT(1D) or 5-ht(1F), receptor subtype // Br. J. Pharmacol. 2001. V. 132. № = 5. P. 991–998. DOI: 10.1038/sj.bjp.0703913
44. Cipolla G., Sacco S., Crema F. et al. Gastric motor effects of triptans: open questions and future perspectives // Pharmacol. Res. 2001. V. 43. № 3. P. 205–210. DOI: 10.1006/phrs.2000.0766
45. Classey J.D., Bartsch T., Goadsby P.J. Distribution of 5-HT(1B), 5-HT(1D) and 5-HT(1F) receptor expression in rat trigeminal and dorsal root ganglia neurons: relevance to the selective anti-migraine effect of triptans // Brain Res. 2010. V. 1361. P. 76–85. DOI: 10.1016/j.brainres.2010.09.004 EDN: NZCDQZ
46. Clemow D.B., Johnson K.W., Hochstetler H.M. et al. Lasmiditan mechanism of action - review of a selective 5-HT1F agonist // J. Headache Pain. 2020. V. 21. № 1. Art. № 71. DOI: 10.1186/s10194-020-01132-3 EDN: SBDDMW
47. Cohen M.L., Schenck K. 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: lack of vasoconstriction to LY344864, a selective serotonin(1F) receptor agonist in rabbit saphenous vein // J. Pharmacol. Exp. Ther. 1999. V. 290. № 3. P. 935–939.
48. Cohen M.L., Schenck K. Contractile responses to sumatriptan and ergotamine in the rabbit saphenous vein: effect of selective 5-HT(1F) receptor agonists and PGF(2alpha) // Br. J. Pharmacol. 2000. V. 131. № 3. P. 562–568. DOI: 10.1038/sj.bjp.0703587
49. Cooper W., Ray S., Aurora S.K. et al. Delivery of Dihydroergotamine Mesylate to the Upper Nasal Space for the Acute Treatment of Migraine: Technology in Action // J. Aerosol Med. Pulm Drug Deliv. 2022. V. 35. № 6. P. 321–332. DOI: 10.1089/jamp.2022.0005 EDN: BNFRIL
50. Cortes-Altamirano J.L., Olmos-Hernandez A., Jaime H.B. et al. Review: 5-HT1, 5-HT2, 5-HT3 and 5-HT7 Receptors and their Role in the Modulation of Pain Response in the Central Nervous System // Curr. Neuropharmacol. 2018. V. 16. № 2. P. 210–221. DOI: 10.2174/1570159X15666170911121027 EDN: YHLPKP
51. Cumberbatch M.J., Hill R.G., Hargreaves R.J. Rizatriptan has central antinociceptive effects against durally evoked responses // Eur. J. Pharmacol. 1997. V. 328. № 1. P. 37–40. DOI: 10.1016/s0014-2999(97)83024-5
52. Cumberbatch M.J., Hill R.G., Hargreaves R.J. The effects of 5-HT1A, 5-HT1B and 5-HT1D receptor agonists on trigeminal nociceptive neurotransmission in anaesthetized rats // Eur. J. Pharmacol. 1998. V. 362. № 1. P. 43–46. -x. DOI: 10.1016/s0014-2999(98)00764 EDN: ABXFSH
53. Cumberbatch M.J., Hill R.G., Hargreaves R.J. Differential effects of the 5HT1B/1D receptor agonist naratriptan on trigeminal versus spinal nociceptive responses // Cephalalgia. 1998. V. 18. № 10. P. 659–663. x. DOI: 10.1046/j.1468-2982.1998.1810659 EDN: YBWXNZ
54. Cutrer F.M., Yu X.J., Ayata G. et al. Effects of PNU-109,291, a selective 5-HT1D receptor agonist, on electrically induced dural plasma extravasation and capsaicin-evoked c-fos immunoreactivity within trigeminal nucleus caudalis // Neuropharmacology. 1999. V. 38. № 7. P. 1043–1053. DOI: 10.1016/s0028-3908(99)00032-5
55. Dahlöf C., Maassen Van Den Brink A. Dihydroergotamine, ergotamine, methysergide and sumatriptan – basic science in relation to migraine treatment // Headache. 2012. V. 52. № 4. P. 707–714. x. DOI: 10.1111/j.1526-4610.2012.02124
56. De Felice M., Ossipov M.H., Wang R. et al. Triptan-induced enhancement of neuronal nitric oxide synthase in trigeminal ganglion dural afferents underlies increased responsiveness to potential migraine triggers // Brain. 2010. V. 133. Pt. 8. P. 2475–2488. DOI: 10.1093/brain/awq159
57. De Felice M., Ossipov M.H., Wang R. et al. Triptan-induced latent sensitization: a possible basis for medication overuse headache // Ann. Neurol. 2010. V. 67. № 3. P. 325–337. DOI: 10.1002/ana.21897
58. De Ponti F., Crema F., Moro E. et al. Role of 5-HT1B/D receptors in canine gastric accommodation: effect of sumatriptan and 5-HT1B/D receptor antagonists // Am. J. Physiol. Gastrointest. Liver Physiol. 2003. V. 285. № 1. P G96–G104. DOI: 10.1152/ajpgi.00280.2002 EDN: GKEJPF
59. Deen M., Hougaard A., Hansen H.D. et al. Association Between Sumatriptan Treatment During a Migraine Attack and Central 5-HT1B Receptor Binding // JAMA Neurol. 2019. V. 76. № 7. P. 834–840. DOI: 10.1001/jamaneurol.2019.0755 EDN: YOARID
60. Dehdashtian A., Afshari K., Zarifeh Jazaeri S. et al. Sumatriptan Increases Skin Flap Survival through Activation of 5-Hydroxytryptamine 1b/1d Receptors in Rats: The Mediating Role of the Nitric Oxide Pathway // Plast. Reconstr. Surg. 2019. V. 144. № 1. P. 70e–77e. DOI: 10.1097/PRS.0000000000005740
61. Dejban P., Rahimi N., Takzare N. et al. Protective effects of sumatriptan on ischaemia/reperfusion injury following torsion/detorsion in ipsilateral and contralateral testes of rat // Andrologia. 2019. V. 51. № 9. Art. № e13358. DOI: 10.1111/and.13358
62. Del Moro L., Rota E., Pirovano E., Rainero I. Migraine, Brain Glucose Metabolism and the “Neuroenergetic” Hypothesis: A Scoping Review // J. Pain. 2022. V. 23. № 8. P. 1294–1317. DOI: 10.1016/j.jpain.2022.02.006 EDN: GYMOGQ
63. Den Boer M.O., Somers J.A., Saxena P.R. Lack of effect of the antimigraine drugs, sumatriptan, ergotamine and dihydroergotamine on arteriovenous anastomotic shunting in the dura mater of the pig // Br. J. Pharmacol. 1992. V. 107. № 2. P. 577–583. x. DOI: 10.1111/j.1476-5381.1992.tb12786
64. Diener H.C., Peters C., Rudzio M. et al. Ergotamine, flunarizine and sumatriptan do not change cerebral blood flow velocity in normal subjects and migraneurs // J. Neurol. 1991. V. 238. № 5. P. 245–250. DOI: 10.1007/BF00319734 EDN: TMVFHY
65. Do T.P., Hougaard A., Dussor G. et al. Migraine attacks are of peripheral origin: the debate goes on // J. Headache Pain. 2023. V. 24. № 1. Art. № 3. DOI: 10.1186/s10194-022-01538-1 EDN: DBSLRZ
66. Donaldson C., Boers P.M., Hoskin K.L. et al. The role of 5-HT1B and 5-HT1D receptors in the selective inhibitory effect of naratriptan on trigeminovascular neurons // Neuropharmacology. 2002. V. 42. № 3. P. 374–385. DOI: 10.1016/s0028-3908(01)00190-3
67. Dresler T., Caratozzolo S., Guldolf K. et al. European Headache Federation School of Advanced Studies (EHF-SAS). Understanding the nature of psychiatric comorbidity in migraine: a systematic review focused on interactions and treatment implications // J. Headache Pain. 2019. V. 20. № 1. Art. № 51. -x. DOI: 10.1186/s10194-019-0988 EDN: MQVTLR
68. Dupre T.V., Jenkins D.P., Muise-Helmericks R.C., Schnellmann R.G. The 5-hydroxytryptamine receptor 1F stimulates mitochondrial biogenesis and angiogenesis in endothelial cells // Biochem. Pharmacol. 2019. V. 169. Art. № 113644. DOI: 10.1016/j.bcp.2019.113644 EDN: FMEWTU
69. Durham P.L., Russo A.F. Regulation of calcitonin gene-related peptide secretion by a serotonergic antimigraine drug // J. Neurosci. 1999. V. 19. № 9. P. 3423–3429. DOI: 10.1523/JNEUROSCI.19-09-03423.1999
70. Dussor G. New discoveries in migraine mechanisms and therapeutic targets // Curr. Opin Physiol. 2019. V. 11. P. 116–124. DOI: 10.1016/j.cophys.2019.10.013 EDN: SYEEDW
71. Edvinsson L. Calcitonin gene-related peptide (CGRP) is a key molecule released in acute migraine attacks-Successful translation of basic science to clinical practice // J. Intern. Med. 2022. V. 292. № 4. P. 575–586. DOI: 10.1111/joim.13506 EDN: YCYJXD
72. Edvinsson J.C.A., Haanes K.A., Edvinsson L. Neuropeptides and the Nodes of Ranvier in Cranial Headaches // Front. Physiol. 2022. V. 12. Art. № 820037. DOI: 10.3389/fphys.2021.820037 EDN: BJVDUV
73. Edvinsson J.C.A., Maddahi A., Christiansen I.M. et al. Lasmiditan and 5-Hydroxytryptamine in the rat trigeminal system; expression, release and interactions with 5-HT1 receptors // J. Headache Pain. 2022. V. 23. № 1. Art. № 26. -z. DOI: 10.1186/s10194-022-01394 EDN: NJJTHF
74. Edvinsson J.C.A., Viganò A., Alekseeva A. et al. European Headache Federation School of Advanced Studies (EHF-SAS). The fifth cranial nerve in headaches // J. Headache Pain. 2020. V. 21. № 1. Art. № 65. DOI: 10.1186/s10194-020-01134-1 EDN: YIBAJM
75. Edvinsson J.C.A., Warfvinge K., Krause D.N. et al. C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system // J. Headache Pain. 2019. V. 20. № 1. Art. № 105. DOI: 10.1186/s10194-019-1055-3 EDN: DTZVXC
76. Edvinsson L., Uddman E., Wackenfors A. et al. Triptan-induced contractile (5-HT1B receptor) responses in human cerebral and coronary arteries: relationship to clinical effect // Clin. Sci. (Lond). 2005. V. 109. № 3. P. 335–342.
77. Elhusseiny A., Hamel E. Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles // Br. J. Pharmacol. 2001. V. 132. № 1. P. 55–62. DOI: 10.1038/sj.bjp.0703763
78. Ellrich J., Messlinger K., Chiang C.Y., Hu J.W. Modulation of neuronal activity in the nucleus raphé magnus by the 5-HT(1)-receptor agonist naratriptan in rat // Pain. 2001. V. 90. № 3. P. 227–231. -X. DOI: 10.1016/S0304-3959(00)00405
79. Eslami F., Rahimi N., Ostovaneh A. et al. Sumatriptan reduces severity of status epilepticus induced by lithium-pilocarpine through nitrergic transmission and 5-HT1B/D receptors in rats: A pharmacological-based evidence // Fundam. Clin. Pharmacol. 2021. V. 35. № 1. P. 131–140. DOI: 10.1111/fcp.12590 EDN: ZDHXIJ
80. Evans M.S., Cheng X., Jeffry J.A. et al. Sumatriptan inhibits TRPV1 channels in trigeminal neurons // Headache. 2012. V. 52. № 5. P. 773–784. x. DOI: 10.1111/j.1526-4610.2011.02053
81. Evers S. Non-Invasive Neurostimulation Methods for Acute and Preventive Migraine Treatment-A Narrative Review // J. Clin. Med. 2021. V. 10. № 15. Art. № 3302. DOI: 10.3390/jcm10153302 EDN: MCLJPG
82. Ferrari A., Tiraferri I., Neri L., Sternieri E. Why pharmacokinetic differences among oral triptans have little clinical importance: a comment // J. Headache Pain. 2011. V. 12. № 1. P. 5–12. DOI: 10.1007/s10194-010-0258-4 EDN: BFHGWH
83. Garrett S.M., Whitaker R.M., Beeson C.C., Schnellmann R.G. Agonism of the 5-hydroxytryptamine 1F receptor promotes mitochondrial biogenesis and recovery from acute kidney injury // J. Pharmacol. Exp. Ther. 2014. V. 350. № 2. P. 257–264. DOI: 10.1124/jpet.114.214700
84. Ghanizada H., Al-Karagholi M.A., Arngrim N. et al. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache // J. Headache Pain. 2020. V. 21. № 1. Art. № 19. DOI: 10.1186/s10194-020-01089-3 EDN: TXGYTT
85. Gharishvandi F., Abdollahi A., Shafaroodi H. et al. Involvement of 5-HT1B/1D receptors in the inflammatory response and oxidative stress in intestinal ischemia/reperfusion in rats // Eur. J. Pharmacol. 2020. V. 882. Art. № 173265. DOI: 10.1016/j.ejphar.2020.173265 EDN: LOIMVZ
86. Gibbs W.S., Garrett S.M., Beeson C.C., Schnellmann R.G. Identification of dual mechanisms mediating 5-hydroxytryptamine receptor 1F-induced mitochondrial biogenesis // Am. J. Physiol. Renal Physiol. 2018. V. 314. № 2. P. F260–F268. DOI: 10.1152/ajprenal.00324.2017
87. Giniatullin R. 5-hydroxytryptamine in migraine: The puzzling role of ionotropic 5-HT3 receptor in the context of established therapeutic effect of metabotropic 5-HT1 subtypes // Br. J. Pharmacol. 2022. V. 179. № 3. P. 400–415. DOI: 10.1111/bph.15710 EDN: QFTLTY
88. Goadsby P.J., Akerman S., Storer R.J. Evidence for postjunctional serotonin (5-HT1) receptors in the trigeminocervical complex // Ann. Neurol. 2001. V. 50. № 6. P. 804–807. DOI: 10.1002/ana.10066
89. Goadsby P.J., Classey J.D. Evidence for serotonin (5-HT)1B, 5-HT1D and 5-HT1F receptor inhibitory effects on trigeminal neurons with craniovascular input // Neuroscience. 2003. V. 122. № 2. P. 491–498. DOI: 10.1016/s0306-4522(03)00570-0 EDN: ETAWST
90. Goadsby P.J., Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats // Ann. Neurol. 1993. V. 33. № 1. P. 48–56. DOI: 10.1002/ana.410330109
91. Goadsby P.J., Holland P.R., Martins-Oliveira M. et al. Pathophysiology of Migraine: A Disorder of Sensory Processing // Physiol. Rev. 2017. V. 97. № 2. P. 553–622. DOI: 10.1152/physrev.00034.2015 EDN: YXSFEF
92. Goadsby P.J., Hoskin K.L. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? // Pain. 1996. V. 67. № 2–3. P. 355–359. DOI: 10.1016/0304-3959(96)03118-1 EDN: ANLGTZ
93. Goadsby P.J., Knight Y. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxy-tryptamine (5-HT(1B/1D)) receptors // Br. J. Pharmacol. 1997. V. 122. № 5. P. 918–922. DOI: 10.1038/sj.bjp.0701456
94. Gomez-Mancilla B., Cutler N.R., Leibowitz M.T. et al. Safety and efficacy of PNU-142633, a selective 5-HT1D agonist, in patients with acute migraine // Cephalalgia. 2001. V. 21. № 7. P. 727–732. x. DOI: 10.1046/j.1468-2982.2001.00208 EDN: BAEKRH
95. González-Hernández A., Lozano-Cuenca J., Marichal-Cancino B.A. et al. Dihydroergotamine inhibits the vasodepressor sensory CGRPergic outflow by prejunctional activation of α2-adrenoceptors and 5-HT1 receptors // J. Headache Pain. 2018. V. 19. № 1. Art. № 40. DOI: 10.1186/s10194-018-0869-8 EDN: KTBEQL
96. Gooshe M., Ghasemi K., Rohani M.M. et al. Biphasic effect of sumatriptan on PTZ-induced seizures in mice: Modulation by 5-HT1B/D receptors and NOS/NO pathway // Eur. J. Pharmacol. 2018. V. 824. P. 140–147. DOI: 10.1016/j.ejphar.2018.01.025
97. Gori S., Morelli N., Bellini G. et al. Rizatriptan does not change cerebral blood flow velocity during migraine attacks // Brain Res. Bull. 2005. V. 65. № 4. P. 297–300. DOI: 10.1016/j.brainresbull.2004.10.015
98. Guo J.D., Rainnie D.G. Presynaptic 5-HT(1B) receptor-mediated serotonergic inhibition of glutamate transmission in the bed nucleus of the stria terminalis // Neuroscience. 2010. V. 165. № 4. P. 1390–401. DOI: 10.1016/j.neuroscience.2009.11.071 EDN: XXAJND
99. Guo L., Zhao L., Ming P. et al. Sumatriptan inhibits the electrophysiological activity of ASICs in rat trigeminal ganglion neurons // Eur. J. Pharmacol. 2018. V. 841. P. 98–103. DOI: 10.1016/j.ejphar.2018.10.013 EDN: HKITDY
100. Guo S., Jansen-Olesen I., Olesen J., Christensen S.L. Role of PACAP in migraine: An alternative to CGRP? // Neurobiol. Dis. 2023. V. 176. Art. № 105946. DOI: 10.1016/j.nbd.2022.105946 EDN: FOTSCA
101. Gupta P., Butler P., Shepperson N.B., McHarg A. The in vivo pharmacological profile of eletriptan (UK-116,044): a potent and novel 5-HT(1B/1D) receptor agonist // Eur. J. Pharmacol. 2000. V. 398. № 1. P. 73–81. DOI: 10.1016/s0014-2999(00)00240-5 EDN: AFRROB
102. Haanes K.A., Edvinsson L. Pathophysiological Mechanisms in Migraine and the Identification of New Therapeutic Targets // CNS Drugs. 2019. V. 33. № 6. P. 525–537. DOI: 10.1007/s40263-019-00630-6 EDN: GPPRKN
103. Haddadi N.S., Ostadhadi S., Shakiba S. et al. Pharmacological evidence of involvement of nitric oxide pathway in anti-pruritic effects of sumatriptan in chloroquine-induced scratching in mice // Fundam. Clin. Pharmacol. 2018. V. 32. № 1. P. 69–76. DOI: 10.1111/fcp.12317
104. Hammack S.E., Braas K.M., May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function // Handb. Clin. Neurol. 2021. V. 179. P. 385–402. -X. DOI: 10.1016/B978-0-12-819975-6.00025
105. Harriott A.M., Gold M.S. Serotonin type 1D receptors (5HTR) are differentially distributed in nerve fibres innervating craniofacial tissues // Cephalalgia. 2008. V. 28. № 9. P. 933–344. x. DOI: 10.1111/j.1468-2982.2008.01635
106. Harriott A.M., Scheff N.N., Gold M.S. The complex actions of sumatriptan on rat dural afferents // Cephalalgia. 2012. V. 32. № 10. P. 738–749. DOI: 10.1177/0333102412451356
107. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition // Cephalalgia. 2018. V. 38. № 1. P. 1-211. DOI: 10.1177/0333102417738202
108. Heijmans L., Mons M.R., Joosten E.A. A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation // Mol. Pain. 2021. V. 17. Art. № 17448069211043965. DOI: 10.1177/17448069211043965 EDN: URJJMF
109. Hemmati S., Rahimi N., Dabiri S. et al. Inhibition of ovalbumin-induced allergic rhinitis by sumatriptan through the nitric oxide pathway in mice // Life Sci. 2019. V. 236. Art. № 116901. DOI: 10.1016/j.lfs.2019.116901
110. Hoffmann J., Miller S., Martins-Oliveira M. et al. PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache? // Pain. 2020. V. 161. № 7. P. 1670–1681. DOI: 10.1097/j.pain.0000000000001858 EDN: CCUSKR
111. Hoffmann J., Storer R.J., Park J.W., Goadsby P.J. N-Methyl-d-aspartate receptor open-channel blockers memantine and magnesium modulate nociceptive trigeminovascular neurotransmission in rats// Eur. J. Neurosci. 2019. V. 50. № 5. P. 2847–2859. DOI: 10.1111/ejn.14423 EDN: HEDADT
112. Hornby P.J. Central neurocircuitry associated with emesis // Am. J. Med. 2001. V. 111. Suppl. 8A. P. 106S–112S. -x. DOI: 10.1016/s0002-9343(01)00849
113. Hoskin K.L., Goadsby P.J. Comparison of more and less lipophilic serotonin (5HT1B/1D) agonists in a model of trigeminovascular nociception in cat // Exp. Neurol. 1998. V. 150. № 1. P. 45–51. DOI: 10.1006/exnr.1997.6749
114. Hoskin K.L., Kaube H., Goadsby P.J. Central activation of the trigeminovascular pathway in the cat is inhibited by dihydroergotamine. A c-Fos and electrophysiological study // Brain. 1996. V. 119. Pt. 1. P. 249–256. DOI: 10.1093/brain/119.1.249
115. Hoskin K.L., Lambert G.A., Donaldson C., Zagami A.S. The 5-hydroxytryptamine1B/1D/1F receptor agonists eletriptan and naratriptan inhibit trigeminovascular input to the nucleus tractus solitarius in the cat // Brain Res. 2004. V. 998. № 1. P. 91–99. DOI: 10.1016/j.brainres.2003.11.018 EDN: EUTVXF
116. Hosseini R., Fakhraei N., Malekisarvar H. et al. Effect of sumatriptan on acetic acid-induced experimental colitis in rats: a possible role for the 5-HT1B/1D receptors // Naunyn Schmiedebergs Arch. Pharmacol. 2022. V. 395. № 5. P. 563–577. DOI: 10.1007/s00210-022-02215-5 EDN: QFPZZU
117. Hou M., Kanje M., Longmore J. et al. 5-HT(1B) and 5-HT(1D) receptors in the human trigeminal ganglion: co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase // Brain Res. 2001. V. 909. № 1–2. P. 112–120. DOI: 10.1016/s0006-8993(01)02645-2 EDN: AQYFLX
118. Huang P.C., Yang F.C., Chang C.M., Yang C.P. Targeting the 5-HT1B/1D and 5-HT1F receptors for acute migraine treatment // Prog. Brain Res. 2020. V. 255. P. 99–121. DOI: 10.1016/bs.pbr.2020.05.010 EDN: ZBFSBT
119. Humphrey P.P. The discovery and development of the triptans, a major therapeutic breakthrough // Headache. 2008. V. 48. № 5. P. 685–687. x. DOI: 10.1111/j.1526-4610.2008.01097
120. Hurtado K.A., Janda J., Schnellmann R.G. Lasmiditan promotes recovery from acute kidney injury through induction of mitochondrial biogenesis // Am. J. Physiol. Renal. Physiol. 2023. V. 324. № 1. P. F56–F63. DOI: 10.1152/ajprenal.00249.2022 EDN: HWHAQO
121. Ibrahimi K., Danser A., Terwindt G.M. et al. A human trigeminovascular biomarker for antimigraine drugs: A randomised, double-blind, placebo-controlled, crossover trial with sumatriptan // Cephalalgia. 2017. V. 37. № 1. P. 94–98. DOI: 10.1177/0333102416637833
122. Iyengar S., Johnson K.W., Ossipov M.H., Aurora S.K. CGRP and the Trigeminal System in Migraine // Headache. 2019. V. 59. № 5. P. 659–681. DOI: 10.1111/head.13529 EDN: GDMTKZ
123. Jähnichen S., Radtke O.A., Pertz H.H. Involvement of 5-HT1B receptors in triptan-induced contractile responses in guinea-pig isolated iliac artery // Naunyn Schmiedebergs Arch. Pharmacol. 2004. V. 370. № 1. P. 54–63. DOI: 10.1007/s00210-004-0941-6
124. Jeong H.J., Chenu D., Johnson E.E. et al. Sumatriptan inhibits synaptic transmission in the rat midbrain periaqueductal grey // Mol. Pain. 2008. V. 4. Art. № 54. DOI: 10.1186/1744-8069-4-54
125. Johnson B., Freitag F.G. New Approaches to Shifting the Migraine Treatment Paradigm // Front. Pain Res. (Lausanne). 2022. V. 3. Art. № 873179. DOI: 10.3389/fpain.2022.873179 EDN: YQQWAN
126. Johnson K.W., Schaus J.M., Durkin M.M. et al. 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs // Neuroreport. 1997. V. 8. № 9–10. P. 2237–2240. DOI: 10.1097/00001756-199707070-00029
127. Juhasz G., Zsombok T., Jakab B. et al. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack // Cephalalgia. 2005. V. 25. № 3. P. 179–183. x. DOI: 10.1111/j.1468-2982.2005.00836
128. Kanai A., Saito M., Hoka S. Subcutaneous sumatriptan for refractory trigeminal neuralgia // Headache. 2006. V. 46. № 4. P. 577–582; discussion 583–584. x. DOI: 10.1111/j.1526-4610.2006.00405
129. Kanai A., Suzuki A., Osawa S., Hoka S. Sumatriptan alleviates pain in patients with trigeminal neuralgia // Clin. J. Pain. 2006. V. 22. № 8. P. 677–680. d. DOI: 10.1097/01.ajp.0000210917.18536.0
130. Karsan N., Goadsby P.J. Migraine Is More Than Just Headache: Is the Link to Chronic Fatigue and Mood Disorders Simply Due to Shared Biological Systems? // Front. Hum. Neurosci. 2021. V. 15. Art. № 646692. DOI: 10.3389/fnhum.2021.646692 EDN: YZLFEN
131. Kaube H., Hoskin K.L., Goadsby P.J. Inhibition by sumatriptan of central trigeminal neurones only after blood-brain barrier disruption // Br. J. Pharmacol. 1993. V. 109. № 3. P. 788–792.
132. Kesserwani H. Migraine Triggers: An Overview of the Pharmacology, Biochemistry, Atmospherics, and Their Effects on Neural Networks // Cureus. 2021. V. 13. № 4. Art. № e14243. DOI: 10.7759/cureus.14243 EDN: YRUWYE
133. Khalilzadeh M., Panahi G., Rashidian A. et al. The protective effects of sumatriptan on vincristine – induced peripheral neuropathy in a rat model // Neurotoxicology. 2018. V. 67. P. 279–286. DOI: 10.1016/j.neuro.2018.06.012
134. Knight Y.E., Edvinsson L., Goadsby P.J. Blockade of calcitonin gene-related peptide release after superior sagittal sinus stimulation in cat: a comparison of avitriptan and CP122,288 // Neuropeptides. 1999. V. 33. № 1. P. 41–46. DOI: 10.1054/npep.1999.0009
135. Knyihár-Csillik E., Tajti J., Csillik A.E. et al. Effects of eletriptan on the peptidergic innervation of the cerebral dura mater and trigeminal ganglion, and on the expression of c-fos and c-jun in the trigeminal complex of the rat in an experimental migraine model // Eur. J. Neurosci. 2000. V. 12. № 11. P. 3991–4002. x. DOI: 10.1046/j.1460-9568.2000.00299
136. Knyihár-Csillik E., Tajti J., Samsam M. et al. Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model // J. Neurosci. Res. 1997. V. 48. № 5. P. 449–464.
137. Labastida-Ramírez A., Rubio-Beltrán E., Haanes K.A. et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system // Pain. 2020. V. 161. № 5. P. 1092–1099. DOI: 10.1097/j.pain.0000000000001801 EDN: FHFNRQ
138. Lambert G.A. Preclinical neuropharmacology of naratriptan // CNS Drug Rev. 2005. V. 11. № 3. P. 289–316. x. DOI: 10.1111/j.1527-3458.2005.tb00048
139. Lambert G.A., Boers P.M., Hoskin K.L. et al. Suppression by eletriptan of the activation of trigeminovascular sensory neurons by glyceryl trinitrate // Brain Res. 2002. V. 953. № 1–2. P. 181–188. DOI: 10.1016/s0006-8993(02)03283-3 EDN: BBLTON
140. Lang I.M. Noxious stimulation of emesis // Dig. Dis. Sci. 1999. V. 44. № 8. P. 58–63.
141. Levy D., Burstein R., Kainz V. et al. Mast cell degranulation activates a pain pathway underlying migraine headache // Pain. 2007. V. 130. № 1–2. P. 166–176. DOI: 10.1016/j.pain.2007.03.012
142. Levy D., Jakubowski M., Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5HT 1B/1D receptor agonists // Proc. Natl. Acad. Sci. U S A. 2004. V. 101. № 12. P. 4274–4279. DOI: 10.1073/pnas.0306147101
143. Levy D., Labastida-Ramirez A., Maassen Van Den Brink A. Current understanding of meningeal and cerebral vascular function underlying migraine headache // Cephalalgia. 2019. V. 39. № 13. P. 1606–1622. DOI: 10.1177/0333102418771350 EDN: BEYZDH
144. Longmore J., Shaw D., Smith D. et al. Differential distribution of 5HT1D- and 5HT1B-immunoreactivity within the human trigemino-cerebrovascular system: implications for the discovery of new antimigraine drugs // Cephalalgia. 1997. V. 17. № 8. P. 833–842. x. DOI: 10.1046/j.1468-2982.1997.1708833
145. Ma Q.P., Hill R., Sirinathsinghji D. Colocalization of CGRP with 5-HT1B/1D receptors and substance P in trigeminal ganglion neurons in rats // Eur. J. Neurosci. 2001. V. 13. № 11. P. 2099–2104. x. DOI: 10.1046/j.0953-816x.2001.01586
146. Maassen Van Den Brink A., Reekers M., Bax W.A. et al. Coronary side-effect potential of current and prospective antimigraine drugs // Circulation. 1998. V. 98. № 1. P. 25–30. DOI: 10.1161/01.cir.98.1.25
147. Maassen Van Den Brink A., Saxena P.R. Coronary vasoconstrictor potential of triptans: a review of in vitro pharmacologic data // Headache. 2004. V. 44. № 1. P. 13–19. x. DOI: 10.1111/j.1526-4610.2004.04104
148. Maneesri S., Akerman S., Lasalandra M.P. et al. Electron microscopic demonstration of pre-and postsynaptic 5-HT1D and 5-HT1F receptor immunoreactivity (IR) in the rat trigeminocervical complex (TCC): new therapeutic possibilities for the triptans // Cephalalgia. 2004. V. 24. № 2. P. 148.
149. Marichal-Cancino B.A., González-Hernández A., Manrique-Maldonado G. et al. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors // Eur. J. Pharmacol. 2012. V. 692. № 1–3. P. 69–77. DOI: 10.1016/j.ejphar.2012.07.033
150. Markowitz S., Saito K., Moskowitz M.A. Neurogenically mediated plasma extravasation in dura mater: effect of ergot alkaloids. A possible mechanism of action in vascular headache // Cephalalgia. 1988. V. 8. № 2. P. 83–91. x. DOI: 10.1046/j.1468-2982.1988.0802083
151. Martin G.R. Pre-clinical pharmacology of zolmitriptan (Zomig; formerly 311C90), a centrally and peripherally acting 5HT1B/1D agonist for migraine // Cephalalgia. 1997. V. 17. № 18. P. 4–14. DOI: 10.1177/0333102497017S1802
152. Mathure D., Ranpise H., Awasthi R., Pawar A. Formulation and Characterization of Nanostructured Lipid Carriers of Rizatriptan Benzoate-Loaded In Situ Nasal Gel for Brain Targeting // Assay Drug Dev. Technol. 2022. V. 20. № 5. P. 211–224. DOI: 10.1089/adt.2022.044 EDN: HVWARJ
153. May A., Burstein R. Hypothalamic regulation of headache and migraine // Cephalalgia. 2019. V. № 13. P. 1710-1719. DOI: 10.1177/0333102419867280
154. McCall R.B., Huff R., Chio C.L. et al. Preclinical studies characterizing the anti-migraine and cardiovascular effects of the selective 5-HT1D receptor agonist PNU-142633 // Cephalalgia. 2002. V. 22. № 10. P. 799–806. x. DOI: 10.1046/j.1468-2982.2002.00459 EDN: BEUPDB
155. McCall R.B. Trigeminal ganglion elicited increases in nucleus trigeminal caudalis blood flow: a novel migraine model // Brain Res. 1997. V. 775. № 1–2. P. 189–192. DOI: 10.1016/s0006-8993(97)00952-9
156. Melo-Carrillo A., Strassman A.M., Nir R.R. et al. Fremanezumab-A Humanized Monoclonal Anti-CGRP Antibody-Inhibits Thinly Myelinated (Aδ) But Not Unmyelinated (C) Meningeal Nociceptors // J. Neurosci. 2017. V. 37. № 44. P. 10587–10596. DOI: 10.1523/JNEUROSCI.2211-17.2017
157. Mitsikostas D.D., Sanchez del Rio M., Moskowitz M.A., Waeber C. Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis // Eur. J Pharmacol. 1999. V. 369. № 3. P. 271–277. DOI: 10.1016/s0014-2999(99)00067-9 EDN: ACPUHP
158. Mitsikostas D.D., Sanchez del Rio M., Waeber C. 5-Hydroxytryptamine(1B/1D) and 5-hydroxytryptamine1F receptors inhibit capsaicin-induced c-fos immunoreactivity within mouse trigeminal nucleus caudalis // Cephalalgia. 2002. V. 22. № 5. P. 384–394. x. DOI: 10.1046/j.1468-2982.2002.00382 EDN: BAEMDT
159. Mitsikostas D.D., Sanchez del Rio M. Receptor systems mediating c-fos expression within trigeminal nucleus caudalis in animal models of migraine // Brain Res. Brain Res. Rev. 2001. V. 35. № 1. P. 20–35. DOI: 10.1016/s0165-0173(00)00048-5 EDN: ANDBTD
160. Moro E., Crema F., De Ponti F., Frigo G. Triptans and gastric accommodation: pharmacological and therapeutic aspects // Dig. Liver Dis. 2004. V. 36. № 1. P. 85–92. DOI: 10.1016/j.dld.2003.09.012
161. Moskowitz M.A., Reinhard J.F. Jr., Romero J. et al. Neurotransmitters and the fifth cranial nerve: is there a relation to the headache phase of migraine? // Lancet. 1979. V. 2. № 8148. P. 883–885. DOI: 10.1016/s0140-6736(79)92692-8
162. Mumtaz F., Rashki A., Imran Khan M. et al. Neuroprotective effect of sumatriptan in pentylenetetrazole-induced seizure is mediated through N-methyl-D-aspartate/nitric oxide and cAMP response element-binding protein signaling pathway // Fundam. Clin. Pharmacol. 2022. V. 36. № 2. P. 250–261. DOI: 10.1111/fcp.12728 EDN: AUITNZ
163. Mumtaz F., Shafaroodi H., Nezamoleslami S. et al. Involvement of nNOS, and α1, α2, β1, and β2 Subunits of Soluble Guanylyl Cyclase Genes Expression in Anticonvulsant Effect of Sumatriptan on Pentylenetetrazole-Induced Seizure in Mice // Iran J. Pharm. Res. 2020. V. 19. № 4. P. 181–192. DOI: 10.22037/ijpr.2020.112594.13844
164. Muñoz-Islas E., Gupta S., Jiménez-Mena L.R. et al. Donitriptan, but not sumatriptan, inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors // Br. J. Pharmacol. 2006. V. 149. № 1. P. 82–91. DOI: 10.1038/sj.bjp.0706839
165. Muñoz-Islas E., Lozano-Cuenca J., González-Hernández A. et al. Spinal sumatriptan inhibits capsaicin-induced canine external carotid vasodilatation via 5-HT1B rather than 5-HT1D receptors // Eur. J. Pharmacol. 2009. V. 615. № 1–3. P. 133–138. DOI: 10.1016/j.ejphar.2009.04.070
166. Nelson D.L., Phebus L.A., Johnson K.W. et al. Preclinical pharmacological profile of the selective 5-HT1F receptor agonist lasmiditan // Cephalalgia. 2010. V. 30. № 10. P. 1159–1169. DOI: 10.1177/0333102410370873
167. Ngo M., Tadi P. Ergotamine/Caffeine. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.
168. Nikai T., Basbaum A.I., Ahn A.H. Profound reduction of somatic and visceral pain in mice by intrathecal administration of the anti-migraine drug, sumatriptan // Pain. 2008. V. 139. № 3. P. 533–540. DOI: 10.1016/j.pain.2008.06.002
169. Noseda R., Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain // Pain. 2013. V. 154. № 1. P. 44–53. DOI: 10.1016/j.pain.2013.07.021
170. Nozaki K., Moskowitz M.A., Boccalini P. CP-93,129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges // Br. J. Pharmacol. 1992. V. 106. № 2. P. 409–415. x. DOI: 10.1111/j.1476-5381.1992.tb14348
171. Oliveira M.M., Akerman S., Tavares I., Goadsby P.J. Neuropeptide Y inhibits the trigeminovascular pathway through NPY Y1 receptor: implications for migraine // Pain. 2016. V. 157. № 8. P. 1666–1673. DOI: 10.1097/j.pain.0000000000000571 EDN: HIUEVN
172. Ong J.J.Y., De Felice M. Migraine Treatment: Current Acute Medications and Their Potential Mechanisms of Action // Neurotherapeutics. 2018. V. 15. № 2. P. 274–290. DOI: 10.1007/s13311-017-0592-1 EDN: LPIAWB
173. Ostergaard J.R., Mikkelsen E., Voldby B. Effects of 5-hydroxytryptamine and ergotamine on human superficial temporal artery // Cephalalgia. 1981. V. 1. № 4. P. 223–228. x. DOI: 10.1046/j.1468-2982.1981.0104223
174. Öztürk B., Karadaş Ö. Cerebral Hemodynamic Changes During Migraine Attacks and After Triptan Treatments // Noro. Psikiyatr. Ars. 2019. V. 57. № 3. P. 192–196. DOI: 10.29399/npa.21650
175. Phebus L.A., Johnson K.W., Zgombick J.M. et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine // Life Sci. 1997. V. 61. № 21. P. 2117–2126. DOI: 10.1016/s0024-3205(97)00885-0
176. Pradhan A.A., Bertels Z., Akerman S. Targeted Nitric Oxide Synthase Inhibitors for Migraine // Neurotherapeutics. 2018. V. 15. № 2. P. 391–401. DOI: 10.1007/s13311-018-0614-7 EDN: VKPZPN
177. Puledda F., Younis S., Huessler E.M. et al. Efficacy, safety and indirect comparisons of lasmiditan, rimegepant, and ubrogepant for the acute treatment of migraine: A systematic review and network meta-analysis of the literature // Cephalalgia. 2023. V. 43. № 3. Art. № 3331024231151419. DOI: 10.1177/03331024231151419 EDN: AWGEMQ
178. Ramírez Rosas M.B., Labruijere S., Villalón C.M., Maassen Vandenbrink A. Activation of 5-hydroxytryptamine1B/1D/1F receptors as a mechanism of action of antimigraine drugs // Expert Opin. Pharmacother. 2013. V. 14. № 12. P. 1599–1610. DOI: 10.1517/14656566.2013.806487
179. Razzaque Z., Heald M.A., Pickard J.D. et al. Vasoconstriction in human isolated middle meningeal arteries: determining the contribution of 5-HT1B- and 5-HT1F-receptor activation // Br. J. Clin. Pharmacol. 1999. V. 47. № 1. P. 75–82. x. DOI: 10.1046/j.1365-2125.1999.00851
180. Reducha P.V., Edvinsson L., Haanes K.A. Could Experimental Inflammation Provide Better Understanding of Migraines? // Cells. 2022. V. 11. № 15. P. 2444. DOI: 10.3390/cells11152444 EDN: OPQPCL
181. Reuter U., Krege J.H., Lombard L. et al. Lasmiditan efficacy in the acute treatment of migraine was independent of prior response to triptans: Findings from the CENTURION study // Cephalalgia. 2022. V. 42. № 1. P. 20–30. DOI: 10.1177/03331024211048507 EDN: PFJOLN
182. Robblee J., Harvey L.K. Cardiovascular Disease and Migraine: Are the New Treatments Safe? // Curr. Pain Headache Rep. 2022. V. 26. № 8. P. 647–655. DOI: 10.1007/s11916-022-01064-4 EDN: EAEZOA
183. Robert C., Bourgeais L., Arreto C.D. et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches // J. Neurosci. 2013. V. 33. № 20. P. 8827–8840. DOI: 10.1523/JNEUROSCI.0439-13.2013
184. Roon K.I., Maassen Van Den Brink A., Ferrari M.D., Saxena P.R. Bovine isolated middle cerebral artery contractions to antimigraine drugs // Naunyn Schmiedebergs Arch. Pharmacol. 1999. V. 360. № 5. P. 591–596. DOI: 10.1007/s002109900095 EDN: AVFJIB
185. Rubio-Beltrán E., Labastida-Ramírez A., Haanes K.A. et al. Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan // Br. J. Pharmacol. 2019. V. 176. № 24. P. 4681–4695. DOI: 10.1111/bph.14832 EDN: BICJQN
186. Rubio-Beltrán E., Labastida-Ramírez A., Villalón C.M., Maassen Van Den Brink A. Is selective 5-HT1F receptor agonism an entity apart from that of the triptans in antimigraine therapy? // Pharmacol. Ther. 2018. V. 186. P. 88–97. DOI: 10.1016/j.pharmthera.2018.01.005 EDN: DLTAEW
187. Saito K., Markowitz S., Moskowitz M.A. Ergot alkaloids block neurogenic extravasation in dura mater: proposed action in vascular headaches // Ann. Neurol. 1988. V. 24. № 6. P. 732–737. DOI: 10.1002/ana.410240607
188. Sakai Y., Dobson C., Diksic M. et al. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis // Neurology. 2008. V. 70. № 6. P. 431–439. f. DOI: 10.1212/01.wnl.0000299095.65331.6
189. Sakamoto Y., Sekino Y., Yamada E. et al. Effect of sumatriptan on gastric emptying: a crossover study using the BreathID system // World J. Gastroenterol. 2012. V. 18. № 26. P. 3415–3419. DOI: 10.3748/wjg.v18.i26.3415
190. Salahi M., Parsa S., Nourmohammadi D. et al. Immunologic aspects of migraine: A review of literature // Front. Neurol. 2022. V. 13. Art. № 944791. DOI: 10.3389/fneur.2022.944791 EDN: FLNXEW
191. Saper J.R., Silberstein S. Pharmacology of dihydroergotamine and evidence for efficacy and safety in migraine // Headache. 2006. V. 46. № 4. P. 171–181. x. DOI: 10.1111/j.1526-4610.2006.00601
192. Saracheva K.E., Prissadova N.A., Turiiski V.I. et al. Effects of the Novel High-affinity 5-HT(1B/1D)-receptor Ligand Frovatriptan on the Rat Carotid Artery // Folia Med. (Plovdiv). 2017. V. 59. № 1. P. 31–36. DOI: 10.1515/folmed-2017-0006
193. Schulte L.H., May A. Of generators, networks and migraine attacks // Curr. Opin. Neurol. 2017. V. 30. № 3. P. 241–245. DOI: 10.1097/WCO.0000000000000441 EDN: EVMMIO
194. Shafqat R., Flores-Montanez Y., Delbono V., Nahas S.J. Updated Evaluation of IV Dihydroergotamine (DHE) for Refractory Migraine: Patient Selection and Special Considerations // J. Pain Res. 2020. V. 13. P. 859–864. DOI: 10.2147/JPR.S203650 EDN: QVYTMS
195. Sheibani M., Faghir-Ghanesefat H., Dehpour S. et al. Sumatriptan protects against myocardial ischaemia-reperfusion injury by inhibition of inflammation in rat model // Inflammopharmacology. 2019. V. 27. № 5. P. 1071–1080. DOI: 10.1007/s10787-019-00586-5 EDN: MIPIVR
196. Shepheard S., Edvinsson L., Cumberbatch M. et al. Possible antimigraine mechanisms of action of the 5HT1F receptor agonist LY334370 // Cephalalgia. 1999. V. 19. № 10. P. 851–858. x. DOI: 10.1046/j.1468-2982.1999.1910851 EDN: BAEIND
197. Shepheard S.L., Williamson D.J., Williams J. et al. Comparison of the effects of sumatriptan and the NK1 antagonist CP-99,994 on plasma extravasation in Dura mater and c-fos mRNA expression in trigeminal nucleus caudalis of rats // Neuropharmacology. 1995. V. 34. № 3. P. 255–261. -j. DOI: 10.1016/0028-3908(94)00153
198. Shields K.G., Goadsby P.J. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? // Neurobiol. Dis. 2006. V. 23. № 3. P. 491–501. DOI: 10.1016/j.nbd.2006.04.003
199. Shimohata K., Shimohata T., Motegi R., Miyashita K. Nasal sumatriptan as adjunctive therapy for idiopathic trigeminal neuralgia: report of three cases // Headache. 2009. V. 49. № 5. P. 768–770. x. DOI: 10.1111/j.1526-4610.2008.01254
200. Silberstein S.D., McCrory D.C. Ergotamine and dihydroergotamine: history, pharmacology, and efficacy // Headache. 2003. V. 43. № 2. P. 144–166. x. DOI: 10.1046/j.1526-4610.2003.03034 EDN: BEWROV
201. Silberstein S.D., Shrewsbury S.B., Hoekman J. Dihydroergotamine (DHE) – Then and Now: A Narrative Review // Headache. 2020. V. 60. № 1. P. 40–57. DOI: 10.1111/head.13700 EDN: GQLUNF
202. Simmons E.C., Scholpa N.E., Cleveland K.H., Schnellmann R.G. 5-hydroxytryptamine 1F Receptor Agonist Induces Mitochondrial Biogenesis and Promotes Recovery from Spinal Cord Injury // J. Pharmacol. Exp. Ther. 2020. V. 372. № 2. P. 216–223. DOI: 10.1124/jpet.119.262410 EDN: ADSHAA
203. Simmons E.C., Scholpa N.E., Schnellmann R.G. FDA-approved 5-HT1F receptor agonist lasmiditan induces mitochondrial biogenesis and enhances locomotor and blood-spinal cord barrier recovery after spinal cord injury // Exp. Neurol. 2021. V. 341. Art. № 113 720. DOI: 10.1016/j.expneurol.2021.113720 EDN: KSEVKN
204. Sokolov A.Y., Osipchuk A.V., Skiba I.B., Amelin A.V. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis // Neurochemical Journal. 2022. V. 16. № 1. P. 31–38. DOI: 10.1134/S1819712422010123 EDN: GQKSRJ
205. Spekker E., Tanaka M., Szabó Á., Vécsei L. Neurogenic Inflammation: The Participant in Migraine and Recent Advancements in Translational Research // Biomedicines. 2021. V. 10. № 1. P. 76. DOI: 10.3390/biomedicines10010076 EDN: BFLSQT
206. Storer R.J., Goadsby P.J. Microiontophoretic application of serotonin (5HT)1B/1D agonists inhibits trigeminal cell firing in the cat // Brain. 1997. V. 120. № 12. P. 2171–2177. DOI: 10.1093/brain/120.12.2171 EDN: ILWDEL
207. Strassman A.M., Levy D. The anti-migraine agent sumatriptan induces a calcium-dependent discharge in meningeal sensory neurons // Neuroreport. 2004. V. 15. № 9. P. 1409–1412. DOI: 10.1097/01.wnr.0000132771.64590.42
208. Tang C., Unekawa M., Kitagawa S. et al. Cortical spreading depolarisation-induced facial hyperalgesia, photophobia and hypomotility are ameliorated by sumatriptan and olcegepant // Sci. Rep. 2020. V. 10. № 1. P. 11408. -w. DOI: 10.1038/s41598-020-67948 EDN: MHPJZB
209. Tao Z.Y., Wang P.X., Wei S.Q. et al. The Role of Descending Pain Modulation in Chronic Primary Pain: Potential Application of Drugs Targeting Serotonergic System // Neural. Plast. 2019. Art. № 1389296. DOI: 10.1155/2019/1389296 EDN: VMYRJK
210. Tepper S.J., Rapoport A.M., Sheftell F.D. Mechanisms of action of the 5-HT1B/1D receptor agonists // Arch. Neurol. 2002. V. 59. № 7. P. 1084–1088. DOI: 10.1001/archneur.59.7.1084
211. Terrin A., Bello L., Valentino M.L. et al. The relevance of migraine in the clinical spectrum of mitochondrial disorders // Sci. Rep. 2022. V. 12. № 1. P. 4222. -z. DOI: 10.1038/s41598-022-08206 EDN: KZYMCO
212. Tfelt-Hansen P., Messlinger K. Why is the therapeutic effect of acute antimigraine drugs delayed? A review of controlled trials and hypotheses about the delay of effect // Br. J. Clin. Pharmacol. 2019. V. 85. № 11. P. 2487–2498. DOI: 10.1111/bcp.14090
213. Tfelt-Hansen P. Pharmacological strategies to treat attacks of episodic migraine in adults // Expert Opin. Pharmacother. 2021. V. 22. № 3. P. 305–316. DOI: 10.1080/14656566.2020.1828347 EDN: BKXPVB
214. Tiwari V., Agrawal S. Migraine and Neuromodulation: A Literature Review // Cureus. 2022. V. 14. № 11. Art. № e31223. DOI: 10.7759/cureus.31223 EDN: ROLOIH
215. Totaro R., De Matteis G., Marini C. et al. Sumatriptan and cerebral blood flow velocity changes during migraine attacks // Headache. 1997. V. 37. № 10. P. 635–639. x. DOI: 10.1046/j.1526-4610.1997.3710635
216. Valdivia L.F., Centurión D., Arulmani U. et al. 5-HT1B receptors, alpha2A/2C- and, to a lesser extent, alpha1-adrenoceptors mediate the external carotid vasoconstriction to ergotamine in vagosympathectomised dogs // Naunyn Schmiedebergs Arch. Pharmacol. 2004. V. 370. № 1. P. 46–53. DOI: 10.1007/s00210-004-0947-0
217. Valetti S., Riaz A., Doko A. et al. Oral transmucosal delivery of eletriptan for neurological diseases // Int. J. Pharm. 2022. V. 627. Art. № 122222. DOI: 10.1016/j.ijpharm.2022.122222 EDN: QSGVGB
218. VanderPluym J.H., Halker Singh R.B., Urtecho M. et al. Acute Treatments for Episodic Migraine in Adults: A Systematic Review and Meta-analysis // JAMA. 2021. V. 325. № 23. P. 2357–2369. DOI: 10.1001/jama.2021.7939 EDN: LCHBTN
219. Varnäs K., Jučaite A., McCarthy D.J. et al. A PET study with [11C]AZ10419369 to determine brain 5-HT1B receptor occupancy of zolmitriptan in healthy male volunteers // Cephalalgia. 2013. V. 33. № 10. P. 853–860. DOI: 10.1177/0333102413476372
220. Venkatraghavan L., Li L., Bailey T. et al. Sumatriptan improves postoperative quality of recovery and reduces postcraniotomy headache after cranial nerve decompression // Br. J. Anaesth. 2016. V. 117. № 1. P. 73–79. DOI: 10.1093/bja/aew152
221. Vera-Portocarrero L.P., Ossipov M.H., King T., Porreca F. Reversal of inflammatory and noninflammatory visceral pain by central or peripheral actions of sumatriptan // Gastroenterology. 2008. V. 135. № 4. P. 1369–1378. DOI: 10.1053/j.gastro.2008.06.085
222. Vila-Pueyo M., Page K., Murdock P.R. et al. The selective 5-HT1F receptor agonist lasmiditan inhibits trigeminal nociceptive processing: Implications for migraine and cluster headache // Br. J. Pharmacol. 2022. V. 179. № 3. P. 358–370. DOI: 10.1111/bph.15699 EDN: EAVVSD
223. Vila-Pueyo M. Targeted 5-HT1F Therapies for Migraine // Neurotherapeutics. 2018. V. 15. № 2. P. 291–303. DOI: 10.1007/s13311-018-0615-6 EDN: GYIQKA
224. Villalón C.M., Centurión D., Willems E.W. et al. 5-HT1B receptors and alpha 2A/2C-adrenoceptors mediate external carotid vasoconstriction to dihydroergotamine // Eur. J. Pharmacol. 2004. V. 484. № 2–3. P. 287–290. DOI: 10.1016/j.ejphar.2003.11.026
225. Villalón C.M., De Vries P., Rabelo G. et al. Canine external carotid vasoconstriction to methysergide, ergotamine and dihydroergotamine: role of 5-HT1B/1D receptors and alpha2-adrenoceptors // Br. J. Pharmacol. 1999. V. 126. № 3. P. 585–594. DOI: 10.1038/sj.bjp.0702324
226. Villalón C.M., VanDenBrink A.M. The Role of 5-Hydroxytryptamine in the Pathophysiology of Migraine and its Relevance to the Design of Novel Treatments // Mini Rev. Med. Chem. 2017. V. 17. № 11. P. 928–938. DOI: 10.2174/1389557516666160728121050
227. Villamil-Hernández M.T., Alcántara-Vázquez O., Sánchez-López A., Centurión D. Pharmacological identification of α1- and α2-adrenoceptor subtypes involved in the vasopressor responses induced by ergotamine in pithed rats // Eur. J. Pharmacol. 2013. V. 715. № 1–3. P. 262–269. DOI: 10.1016/j.ejphar.2013.05.011
228. Viticchi G., Falsetti L., Silvestrini M., Bartolini M. Ditans: a new prospective for the therapy of migraine attack? // Neurol. Sci. 2022. V. 43. № 9. P. 5709–5716. -z. DOI: 10.1007/s10072-022-06260 EDN: RBNUMT
229. Williamson D.J., Hargreaves R.J., Hill R.G., Shepheard S.L. Sumatriptan inhibits neurogenic vasodilation of dural blood vessels in the anaesthetized rat–intravital microscope studies // Cephalalgia. 1997. V. 17. № 4. P. 525–531. x. DOI: 10.1046/j.1468-2982.1997.1704525
230. Williamson D.J., Hill R.G., Shepheard S.L., Hargreaves R.J. The anti-migraine 5-HT(1B/1D) agonist rizatriptan inhibits neurogenic dural vasodilation in anaesthetized guinea-pigs // Br. J. Pharmacol. 2001. V. 133. № 7. P. 1029–1034. DOI: 10.1038/sj.bjp.0704162
231. Williamson D.J., Shepheard S.L., Hill R.G., Hargreaves R.J. The novel anti-migraine agent rizatriptan inhibits neurogenic dural vasodilation and extravasation // Eur. J. Pharmacol. 1997. V. 328. № 1. P. 61–64. DOI: 10.1016/s0014-2999(97)83028-2
232. Winters B.L., Jeong H.J., Vaughan C.W. Inflammation induces developmentally regulated sumatriptan inhibition of spinal synaptic transmission // Br. J. Pharmacol. 2020. V. 177. № 16. P. 3730–3743. DOI: 10.1111/bph.15089 EDN: YFWLEX
233. Yamauchi N., Sato K., Sato K. et al. Chronic pain-induced neuronal plasticity in the bed nucleus of the stria terminalis causes maladaptive anxiety // Sci. Adv. 2022. V. 8. № 17. Art. № eabj5586. DOI: 10.1126/sciadv.abj5586 EDN: KETOLW
234. Zhang L.Q., Zhou Y.Q., Li J.Y. et al. 5-HT1F Receptor Agonist Ameliorates Mechanical Allodynia in Neuropathic Pain via Induction of Mitochondrial Biogenesis and Suppression of Neuroinflammation // Front. Pharmacol. 2022. V. 13. Art. № 834570. DOI: 10.3389/fphar.2022.834570 EDN: NFYGSE
235. Zhang X.C., Strassman A.M., Burstein R., Levy D. Sensitization and activation of intracranial meningeal nociceptors by mast cell mediators // J. Pharmacol. Exp. Ther. 2007. V. 322. № 2. P. 806–812. DOI: 10.1124/jpet.107.123745
236. Zhang X., Liu W., Wang W. et al. Evaluation of Gum Arabic Double-layer Microneedle Patch Containing Sumatriptan for Loading and Transdermal Delivery // Curr. Drug Deliv. 2023. Epub ahead of print. DOI: 10.2174/1567201820666230309140636 EDN: AAZMPM
237. Dihydroergotamine. DrugBank Online. URL https://go.drugbank.com/drugs/DB00320 дата обращения 08.03.2023.
238. Dihydroergotamine. The International Union of Basic and Clinical Pharmacology (IUPHAR) / British Pharmacological Society (BPS) Guide to PHARMACOLOGY. URL https://www.guidetopharmacology.org/GRAC/Lig and DisplayForward?tab=biology&lig and Id=121 дата обращения 06.03.2023.
239. Ergotamine. DrugBank Online. URL https://go.drugbank.com/drugs/DB00696 дата обращения 08.03.2023.
240. Ergotamine\
Выпуск
Другие статьи выпуска
Описаны основные подходы к моделированию познавательной деятельности человека и нейронных механизмов, лежащих в ее основе. Приведена систематизация когнитивных архитектур и дан обзор таких популярных моделей как ACT-R, SOAR, CLARION и CHREST с примерами их практического применения в психологии и нейрофизиологии. Разработанные модели когнитивных функций позволяют давать прогнозы эффективности восприятия и селекции информации, какие знания и процедуры требуются для оптимального решения задачи, ожидаемую частоту ошибок при выполнении задания и какая функциональная система мозга используется для организации поведения. Совершенствование и дополнение существующих моделей когнитивной архитектуры рассматривается как перспектива развития когнитивной нейронауки, понимания закономерностей формирования естественного интеллекта и разработки искусственного интеллекта.
Обзор посвящен применению методов нелинейной динамики к анализу динамических изменений в паттернах физиологических ритмов мозга при возникновении нарушений, связанных с хронически повышенным артериальным давлением и с нарушением сердечного ритма по типу фибрилляции предсердий при наличии и отсутствии умеренных когнитивных нарушений. Показана возможность применения этих методов для выявления маркеров этих нарушений. Эти маркеры связаны с параметрами фазовой синхронизации между ритмическими фотостимулами и ответами мозга в виде электроэнцефалографических паттернов.
Широкое распространение заболеваний центральной нервной системы (ЦНС) требует непрерывного поиска методов и средств их фармакологической коррекции. Основные подходы экспериментального моделирования данных заболеваний включают использование грызунов, недостатками которых является стоимость проводимых исследований, сложность содержания, ухода и долгий рост организма. Использование альтернативных модельных организмов, таких как рыба зебраданио (Danio rerio, zebrafish), в трансляционной нейробиологии и медицине позволяет проводить быстрые экспериментальные работы на фоне простоты содержания и манипуляций, а также ускоренного онтогенеза. Зебраданио также чувствительны к основным классам фармакологических препаратов, что делает данную модель незаменимой для доклинических исследований широкого спектра физиологически активных веществ. Сходство нейрохимических систем, высокая физиологическая и генетическая гомология с человеком, возможность проведения исследований на личинках и взрослых особях, легкость генетических манипуляций, прозрачность эмбрионов и ряд других биологических особенностей открывают широкий спектр возможностей использования зебраданио для моделирования различных патологий ЦНС.
Сократительная функция сердца осуществляется за счет согласованного взаимодействия основных свойств миокарда – растяжимости, сократимости и расслабимости. Нарушение сократимости миокарда по каким-либо причинам создает ситуацию хронической сердечной недостаточности (ХСН). Выраженность ХСН определяется способностью кровеносной системы в определенной степени компенсировать ослабление сократимости сердца, критерием которой является величина фракции выброса. Форма ХСН с сохраненной фракцией выброса определяется как диастолическая дисфункция. Это первый этап ХСН, его отличительными особенностями являются замедленное расслабление и повышенное диастолическое давление в левом желудочке. Обзор посвящен рассмотрению структуры диастолы при 4 типах ХСН – ишемической болезни сердца при инфаркте миокарда или микроинфарктах, вызванных изопротеренолом, повреждении миокарда, индуцированном доксорубицином и сахарном диабете 1 типа. Общим признаком всех видов ХСН является повышение растяжимости миокарда и замедление расслабления. Показано, что в их основе лежит изменение свойств коннектина (титина) – саркомерного белка, соединяющего концы миозиновых нитей с границами саркомера. Его свойства определяют растяжение и расслабление миокарда, и эти изменения лежат в основе первичной компенсаторной реакции сердца на ослабление его сократимости. Также мобилизуются механизмы, увеличивающие приток к сердцу и снижающие периферическое сопротивление. Степень их мобилизации зависит от степени снижения сократимости миокарда. Наряду с этим, каждая форма ХСН имеет свою специфику, которую необходимо учитывать при выборе средств терапии.
Лимфатическая система играет определяющую роль в иммунитете, выходящую далеко за рамки простого транспорта иммунных клеток и антигенов. Эндотелиальные клетки в различных отделах этой сосудистой сети высоко специализированы для выполнения различных специфических функций. Лимфатические капилляры экспрессируют хемокины и молекулы адгезии, которые в тканях способствуют привлечению и трансмиграции иммунных клеток. Сигнальные молекулы, продуцируемые эндотелиальными клетками лимфатических капилляров при воспалении, модулируют в лимфатических узлах миграцию лимфоцитов через венулы с высоким эндотелием из крови в паренхиму лимфатических узлов. Лимфатические сосуды обеспечивают активный регулируемый транспорт иммунных клеток и антигенов в лимфатические узлы. В лимфатических узлах с их сложной структурой, организованной стромальными клетками, создаются оптимальные условия для контактов антигенпрезентирующих клеток с лимфоцитами. Различные субпопуляции лимфатических эндотелиальных клеток лимфатических узлов выполняют специфические функции в соответствии с локализацией в лимфатическом узле и способствуют как врожденному, так и приобретенному иммунному ответу посредством презентации антигена, ремоделирования лимфатического узла и регуляции входа и выхода лейкоцитов.
Издательство
- Издательство
- ИЗДАТЕЛЬСТВО НАУКА
- Регион
- Россия, Москва
- Почтовый адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- Юр. адрес
- 121099 г. Москва, Шубинский пер., 6, стр. 1
- ФИО
- Николай Николаевич Федосеенков (Директор)
- E-mail адрес
- info@naukapublishers.ru
- Контактный телефон
- +7 (495) 2767735